EW Sphalerons: Discussion Points

Germano Nardini (U. of Stavenger), Felix Yu (JGU Mainz)

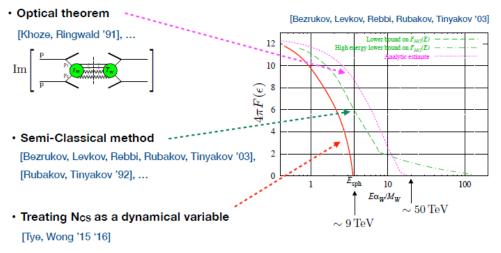
Topological Effects in the Standard Model: Instantons, Sphalerons and Beyond at LHC CERN Theory Workshop, December 17, 2020

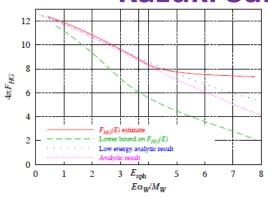
Implications

See contribution by **David Ho**

Critical field strength where sphaleron energy vanishes is

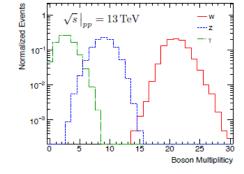
$$B_{\rm crit}^{(2)} = \frac{m_{
m H}^2}{e} \approx 5.2 \times 10^4 \ {
m GeV} \approx 2.7 \times 10^{20} \ {
m T}$$


- Magnetic fields in LHC heavy-ion collisions $\sim 1~{\rm GeV^2}$ and scale linearly with energy, so $\sqrt{s} \sim 10^5~{\rm TeV}$ required.
- ullet 10 TeV Pb-Pb collisions lower sphaleron energy by \sim 0.1%.
- Unsuppressed sphaleron production due to magnetic fields not feasible in forseeable future.
- Potential cosmological/astrophysical sources:
 - Superconducting cosmic strings
 - Magnetically charged black holes
 - Inflation produced large scale magnetic fields


EW Sphalerons: Discussion points

Contribution by

Theoretical prediction for cross-sections is largely unknown...


Kazuki Sakurai

Boson multiplicities in the final state?

- LO instanton PT predicts large multiplicity of EW bosons.
- This estimate is valid only for E << 10 TeV, what do we expect for E > 10 TeV?
- Important to understand the experimental signatures:
 CMS sphaleron search assumes only fermion productions.

- Any effect from BSM physics?
- Where should be looked at? Colliders, Cosmic rays, ..
- If observed, how are we sure if it is instanton/sphaleron? Sphaleron vs BH?

1) Production of multi particle states in 2 to n collisions is exponentially suppressed at weak coupling. Unless the state saturates entropy bounds. This happens at critical collective and 't Hooft couplings:

$$\lambda_c = \alpha n = 1, \quad \lambda_t = \alpha N = 1$$

at this point n- particle state (saturon) saturates unitarity.

The cross section at optimal truncation:

$$6 = \int (\lambda_t)^{\frac{1}{\alpha}}$$

$$4 = 1 \text{ for } \lambda_t \sim 1$$

2) Saturons behave as black holes:

$$S = ER = \frac{1}{2} = (Rf)^2$$

- 3 Beyond the saturation point a renormalizable asymptotically free theory must either hit a fixed point or generate a mass gap: Either confine or enter the Higgs phase.
- 4) If theory is not asymptotically free or perturbatively hits a strong coupling, it can UV-complete by classicalization.
- 5) In QCD confinement is correlated with the saturation of entropy bound by instanton, and by multi- gluon states. It therefore appears to be a self-defense against violation of entropy bound and unitarity by colored states.

Contribution by Gia Dvali

Further general discussion points

- 1. Theory uncertainty on SM xsec
 - "Holy grail" function
- 2. Model dependence on BSM xsec and possible final states

 See, e.g. Cerdeño, Reimitz, Sakurai, Tamarit [1801.03492]
 - EFT treatment/Heavy particle (non-)decoupling
 - New chiral gauge U(1)' models, e.g. baryon or lepton number
 - Also related: Possible axion effect on instanton rates (P. Schwaller)
- 3. Higher energy colliders or other synergistic experiments?