Thanks to organizers, I have not seen/discussed with many of all these uses since 1990's...
-Do we have quantitative (or qualitative) formulae for cross sections?
-Do we understand what is to be produced?
$\sigma \sim($ entrance factor $)($ semiclassical prefactor $) \exp \left(-S_{c l}\right)$
We do understand (i) the landscape;

Large R
If NCS<1/2 the configuration rolls back! Therefore one can save only about $1 / 2$ of the action!

Whatever ansatz is used, the produced object is Pure magnetic at t=0

Three methods produced the same map 1.Verbaarschot solution (or Yung Ansatz) 2.constrained minimization
3.conformal off-center transformation
contribution to general discussion of instanton-sphaleron workshop, Edward Shuryak, Dec.17, 2020
contribution to general discussion of instanton-sphaleron workshop, Edward Shuryak, Dec.17, 2020, page 2

Semiclassical prefactor: Which Lambda? What are corrections?
 $$
\left(\frac{\Lambda}{\rho}\right)^{b_{0}}\left(1+C \alpha_{s}+\ldots\right)
$$
 Semiclassical series

F. Wohler and E. Shuryak, Phys. Lett. B 333, 467-47o (1994)

Three-loop Correction to the Instanton Density. I. The Quartic Double Well Potential
M.A. Escobar-Ruiz, E. Shuryak, A.Turbiner: Phys.Rev.D 92 (2015) 2• e-Print: 1501.03993

New diagrams, orthogonality to zero modes
Not easy to obtain propagator
Calculation for QFT (phi^4 and YM) in progress
CORREGTIONS ARE LARGE
Comparison to lattice Large T -> dilute instantons

WUPPERTAL-BUDPEST COLLAB: CORRECTION TO T'HOOFT IS ABOUT FAGTOR 10

THE ENTRANCE FACTOR A proton is complicated, so what is it colliding, producing a sphaleron?
Version 1: two gluons Pros we know gluon PDFs, if we know the normalization scale mu
This depends on which size /mass of sphaleron we want to see If multi-gluon jet decays -> M about 100 GeV , rho like $\mathbf{1 / (1 0 \mathrm { GeV })}$ Mueller, Khoze -> perturbative corrections, BFKL pomeron

That is why I propose to start with double diffiraction: MAXIMAL GROSS SECTION (min. Action) NO messy underlying event
UA8 already seen some clusters which fit the mass

