
Thanks to organizers, I have not seen/discussed with many of all these uses since 1990's...

- Do we have quantitative (or qualitative) formulae for cross sections?
- Do we understand what is to be produced?

$$\sigma \sim (entrance\ factor)(semiclassical\ prefactor)exp(-S_{cl})$$

Whatever ansatz is used the produced object is Pure magnetic at t=0

Three methods produced the same map 1. Verbaarschot solution (or Yung Ansatz) 2. constrained minimization 3. conformal off-center transformation

contribution to general discussion of instanton-sphaleron workshop, Edward Shuryak, Dec.17, 2020

contribution to general discussion of instanton-sphaleron workshop, Edward Shuryak, Dec.17, 2020, page 2

Semiclassical prefactor:
Which Lambda?
What are corrections?

$$(\frac{\Lambda}{\rho})^{b_0}(1+C\alpha_s+\dots)$$
Semiclassical series

FOR DOUBLE WELL INSTANTON
CALCULATED TWO AND THREE LOOPS

F. W'ohler and E. Shuryak, Phys. Lett. B 333, 467-470 (1994)

Three-loop Correction to the Instanton Density. I. The Quartic Double Well Potential

M.A. Escobar-Ruiz, E. Shuryak, A. Turbiner: *Phys. Rev. D* 92 (2015) 2· e-Print: 1501.03993

New diagrams, orthogonality to zero modes
Not easy to obtain propagator
Calculation for QFT (phi^4 and YM) in progress
CORRECTIONS ARE LARGE

Comparison to lattice Large T -> dilute instantons

WUPPERTAL-BUDPEST COLLAB:
CORRECTION TO T'HOOFT IS ABOUT FACTOR 10

THE ENTRANCE FACTOR

A proton is complicated, so what is it colliding, producing a sphaleron?

Version 1: two gluons Pro: we know gluon PDFs, if we know the normalization scale mu

This depends on which size /mass of sphaleron we want to see If multi-gluon jet decays -> M about 100 GeV, rho like 1/(10 GeV) Mueller, Khoze -> perturbative corrections, BFKL pomeron

Version 1: two Pomerons

Pomeron, unlike a gluon, has its own size And it is clear optimal size rho is that size

That is why I propose to start with double diffraction: MAXIMAL CROSS SECTION (min. Action) NO messy underlying event UA8 already seen some clusters which fit the mass