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Basic Ideas



Bekenstein Bound and Xons

Bekenstein’s argument that a black hole (BH) reaches the maximal

entropy at disposal of a physical system1 led to two main proposals:

• The degrees of freedom (dof) responsible for the BH entropy have

to take into account both matter and spacetime and hence must

be of a new, more fundamental nature than the dof we know,

here we call such dof “Xons” 2

• The Hilbert space H of the Xons of a given BH is necessarily

finite dimensional3

1J. D. Bekenstein, Phys. Rev. D 23, 287 (1981).
2G. Acquaviva, A. Iorio and M. Scholtz, Ann. Phys. 387, 317 (2017).
3N. Bao, S. M. Carroll and A. Singh, Int. J. Mod. Phys. D 26, no. 12, 1743013

(2017).
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Bekenstein Bound from the Pauli principle

Here4 we reverse that logic. We suppose that.

• In a BH only free Xons exist

• They are finite in number and fermionic in nature. This amounts

to have a finite dimensional H

Then, one can show that BH evaporation is a dynamical mechanism

producing a maximal entanglement entropy Smax:

dimH = eSmax

where Smax is equal to the initial BH entropy.

4G. Acquaviva, A. Iorio and L. S., Phys. Rev. D 102, 106002 (2020).
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Black hole evaporation and

Thermofield dynamics



TFD: Thermal average and thermal vacuum

Thermal average of a quantum operator A is 〈A〉 = Tr[Aρ]/Tr[ρ]

where ρ is the density matrix. In the canonical ensemble ρ = e−β H ,

with β = 1/T . Thermal vacuum is defined by5.

〈A〉 =
1

Z(β)

∑
n

e−βEn〈n|A|n〉 = 〈0(β)|A |0(β)〉

Z(β) ≡ Trρ is the partition function and |n〉 are energy eigenstates

(H|n〉 = En|n〉). The solution is:

|0(β)〉 =
1√
Z(β)

∑
n

e
−βEn

2 |n〉 ⊗ |ñ〉

5Y. Takahashi and H. Umezawa, Collective Phenomena 2, 55 (1975).
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TFD: Tilde modes

|ñ〉 can be seen as reservoir modes (or holes): The price of purification

is the doubling of degrees of freedom.

Figure 1: Taken from H. Umezawa, H. Matsumoto and M. Tachiki, Thermo Field Dynamics And Condensed

States, (North-Holland, Amsterdam, 1982).

We define

c(β,k) =
√

1 + ε f(β,k) d(β,k) =
√
f(β,k)

where ε = 1 (−1) for bosons (fermions) and f(β,k) = 1/
(
eβωk − ε

)
.
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Entropy operator

Then, thermal vacuum can be rewritten as

|0(β)〉 = exp

(
−S

2

)
exp

(∑
k

a†k ã
†
k

)
|0〉 ⊗ |0̃〉

where H|0〉 = E0|0〉 and the same for tilde. Entropy operator was

defined:

S = −
∑
k

(
a†k ak ln d2(β,k) − ε ak a

†
k ln c2(β,k)

)

S permits to quantify entanglement entropy of |0(β)〉:

〈0(β)|S|0(β)〉 = −
∑
n

wn lnwn , wn =
e−β En

Z(β)

The system is entangled with its double.
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Euclidean Schwarzschild vs Rindler metric

Schwarzschild metric:

ds2 = −f(r) dt2 +
dr2

f(r)
+ r2 dΩ2

f(r) =
(
1− rs

r

)
, rs = 2M . Near the horizon (outside)

ds2 = −ρ2 dη2 + dρ2 + r2
s dΩ2

η = κ t and dρ = dr/
√
f . κ = 1/2rs is the surface gravity. This is

equivalent to R2 (Rindler) ×S2. After Wick rotation (θ = iη)

ds2
E = ρ2 dθ2 + dρ2 + r2

s dΩ2

This is euclidean metric in four dimensions
(
RE2 × S2 =ME

4

)
.
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Rindler vs Minkowski Hilbert space

The (right wedge) Rindler Hilbert space is

HR ≡ {Ψ [φR] |φR(X) ≡ φ(X > 0)}

and the same for left wedge (X < 0) Hilbert space HL. Here

X = ρ cosh η, T = ρ sinh η. The Minkowski Hilbert space is:

HM = HL ⊗HR

Figure 2: Taken from H. Liu, https://ocw.mit.edu/courses/physics/8-821-string-theory-and-

holographic-duality-fall-2014/
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Minkowski vacuum as thermal vacuum

Minkowski vacuum wave functional:

Ψ0[φL, φR] =

∫ φ(θ=0)=φR

φ(θ=−π)=φL

Dφ e−SE [φ]

With respect to η

Ψ0[φL, φR] = 〈φL|e−i (−iHR)|φR〉 =
∑
n

e−π En χn[φL]χn[φR]

HR is the generator of η translations. Minkowski vacuum state:

|0〉M ∝
∑
n

e−π En |n〉L ⊗ |n〉R

thermal vacuum with T = 1/(2π) (Unruh effect)6.
6W.G, Unruh, Phys. Rev. D 14, 870 (1976).
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BH temperature and BH entropy

In the BH case (respect to t), we have Hartle–Hawking vacuum, with

temperature TBH = κ/(2π). BH (Bekenstein–Hawking) entropy7:

SBH =

∫ M

0

dE

TBH
= 4πM2 =

A
4

A is the area of the event horizon.

• L−R entanglement entropy can be computed as VEV of entropy

operator8

• Same considerations hold for AdS BHs9

7J. D. Bekenstein, Lett. Nuovo Cim. 4, 737 (1972); S.W. Hawking, Nature 248,

30 (1974).
8A. Iorio, G. Lambiase and G. Vitiello, Ann. Phys. 309, 151 (2004).
9J. M. Maldacena, JHEP 0304, 021 (2003).

11



Information loss paradox: Page curve

BH evaporation ⇒ BH in pure state can end up a mixed state10: Loss

of unitarity?. Page11 studied the bipartite BH/radiation system in a

random pure state ⇒ Entanglement entropy Sm,n and Information

Im,n as function of lnm, with m ≡ dimHrad, n ≡ dimHBH :

System starts and ends up in a pure state ⇒ Unitary evolution.
10S.W. Hawking, Phys. Rev. D 14, 2460 (1976).
11D. N. Page, Phys. Rev. Lett. 71, 3743 (1993).
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The Hilbert space of quantum

gravity and Xons



Bekenstein Bound

Bekenstein suggested12 that the entropy of a physical system with

energy E, enclosed in a sphere of radius R, should be bounded from

above: Bekenstein Bound (BB)

S ≤ 2π RE

In general relativity, it must hold:

R ≥ 2E

(r ≥ rs). Then13

S ≤ A
4

This last is called holographic bound. Both are saturated by a BH.
12J. D. Bekenstein, Phys. Rev. D 23, 287 (1981).
13P.F. González-Dı́az, Phys. Rev. D 27, 3042 (1983).
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Bekenstein Bound and finiteness of QG Hilbert space (1)

• In QFT, an infinite number of dof, in a system in a finite region

R, could be entangled with an infinite number of external dof ⇒
infinite entanglement entropy

• When gravity is involved, only a finite number of dof, N , can

occupy R: over a certain energy they collapse in a BH ⇒
maximum entropy in R

• Collapse of more energy will just increase the size of the BH, over

R

But N = dimHR ⇒ locally finite dimensional Hilbert space14

dimHR ≤ eSBH

14N. Bao, S. M. Carroll and A. Singh, Int. J. Mod. Phys. D 26, 1743013 (2017).
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Bekenstein Bound and finiteness of QG Hilbert space (2)

This means that the Hilbert space of the universe can be factorized

as15

Huni =
⊗
α

Hα , dimHα < ∞

In one region, physics is described by reduced density matrix:

ρR ≡ trR̄ρuni

The mentioned dof should describe, at an emergent level, both

matter/field and spacetime on which fields are defined16.

15S. M. Carroll and A. Singh, [arXiv:1801.08132 [quant-ph]].
16G. Acquaviva, A. Iorio and M. Scholtz, Ann. Phys. 387, 317 (2017).
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Towards Xons: main assumptions

• Validity of BB ⇒ Finite dimensional Hilbert spaces for bounded

regions ⇒ Finite number of dof

Σ = dimH

• N could counts dof more fundamental than gravity and matter:

Gravity and matter/fields emerge from such fundamental

dof: Xons

• For a BH, Xons are fully excited:

dimHBH = eSBH
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Emergent spacetime and matter

Xons must rearrange to form spacetime and matter. It should exist a

map

|g(a)〉 = PG|ψ〉 , |φ〉 = PF |ψ〉

from H (Xons Hilbert space) into HF (field/matter modes Hilbert

space) and HG (geometric modes Hilbert space). Consider a number

NT of subspaces T(i) ⊂ H of states with specific distribution of dof

between field and spacetime. We can decompose H

T(i) = HpiG ⊗H
qi
F and H =

NT⊕
i=1

(HpiG ⊗H
qi
F )

Here pi (qi) ≡ dimHpiG (dimHqiF ).
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Re-shuffling of dof: loosing unitarity

• Unitary evolution of states in H, at the Xons level

• Many configurations in H correspond to the same emergent

geometry: many microstates compatible with the same

macrostate

• dof in H are re-shuffled during evolution

Consequences:

Two equivalent geometries can differ by the number of dof

available for the quantum fields ⇒ even though fundamental

evolution is unitary, emergent spacetime and matter get

entangled

18



Geometry–Matter entanglement entropy

Geometry–Matter entanglement entropy in BH evaporation, as a

function of BH mass:

Non-zero final entanglement entropy is due to the presence of more

than one microscopic realization of the same emergent geometry17.
17G. Acquaviva, A. Iorio and M. Scholtz, Ann. Phys. 387, 317 (2017).
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Bekenstein Bound from the

Pauli principle



Fermionic Xon model of BH evaporation

• We assume our system has only a finite number N of quantum

levels (slots) to be filled (e.g. Planck cells)

• We assume that Xons are fermions ⇒ Each quantum level can be

filled by no more than one fermion ⇒ dimH <∞.

• Before evaporation, BH state is described by free Xons, which fill

all slots.

• Evaporation consists of steady process:

N → (N − 1)→ (N − 2)→ · · · . That is, the number of free

Xons steadily decreases

• During evaporation Xons rearrange into quasi-particles and the

spacetime they live in ⇒ Intrinsic notion of interior (BH) and

exterior (environment)18.

18G. Acquaviva, A. Iorio and L.S., Phys. Rev. D 102, 106002 (2020).
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Occupation number representation for Xons

Creation/annihilation operators of Xons{
an , a

†
n′

}
=
{
bn , b

†
n′

}
= δnn′ n = 1, . . . , N

a-modes=environment, b-modes=BH. Initial state:

|0, N〉 ≡ |0, 0, . . . , 0〉
I
⊗ |1, 1, . . . , 1〉

II

with |1, 1, . . . , 1〉
II
≡ b†1b

†
2 . . . b

†
N |0, 0, . . . , 0〉II . Final state:

|N, 0〉 ≡ |1, 1, . . . , 1〉I ⊗ |0, 0, . . . , 0〉II

where |1, 1, . . . , 1〉I ≡ a
†
1a
†
2 . . . a

†
N |0, 0, . . . , 0〉I .
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BH state in Xon model

A toy-model corresponding to such boundary conditions is defined by

the entangled state

|Ψ(σ)〉 =

N∏
i=1

∑
ni=0,1

Ci(σ)
(
a†i

)ni (
b†i

)1−ni
|0〉I ⊗ |0〉II

with

Ci = (sinσ)ni (cosσ)1−ni

σ is an interpolating parameter, which describes the evolution of the

system, from σ = 0 till σ = π/2. H has dimension

Σ = 2N .
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TFD entropy as von Neumann entropy

We define the entropy operator for environment modes as in TFD

SI(σ) = −
N∑
n=1

(
a†n an ln sin2 σ + an a

†
n ln cos2 σ

)
and the entropy operator for BH modes

S
II

(σ) = −
N∑
n=1

(
b†n bn ln cos2 σ + bn b

†
n ln sin2 σ

)
Taking the expectation value of S

I/II(σ) ≡ 〈S
I/II(σ)〉σ:

SI(σ) = −N
(
sin2 σ ln sin2 σ + cos2 σ ln cos2 σ

)
= SII(σ)

where 〈. . .〉σ ≡ 〈Ψ(σ)| . . . |Ψ(σ)〉. This is the von Neumann entropy of

|Ψ(σ)〉.
23



Entanglement entropy in BH evaporation

Entropy as a function of σ, in the case N = 1000:
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It describes a unitary evolution: Page-like behavior.
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Maximum entropy and Hilbert space dimension

The maximum entropy value is

Smax = N ln 2 = ln Σ

Then

Σ = eSmax

• SI = Smax when the modes have half probability to be inside

and half probability to be outside the BH ⇒ the largest amount

of bits are necessary to describe the system.

• Intrinsic way to know how big is H, which is related to the initial

size of the BH ⇒ Smax tells how big was BH before evaporation

⇒ Smax = Smax(M0,J0,Q0). This is BB in this picture
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Number operators

Number operators:

N̂I =

N∑
n=1

a†n an , N̂II =

N∑
n=1

b†n bn

Their expectation values are:

NI(σ) ≡ 〈N̂I〉σ = N sin2 σ

N
II

(σ) ≡ 〈N̂
II
〉σ = N −N

I
(σ) = N cos2 σ

It is clear that σ could be discretized:

σ(N
I
) = arcsin

√
N

I

N

NI is constrained to be an integer NI = m ⇒ σ(N
I
) = σm
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Number fluctuations and entanglement

Standard deviation of N̂j on |Ψ(σ)〉:

∆N
I
(σ) = ∆N

II
(σ) =

√
N sin(2σ)

2

∆Nj ≡
√
〈N̂2

j 〉σ − 〈N̂j〉2σ. This is a measure of the entanglement19:

0.5 1.0 1.5
σ

2

4

6

8

ΔN j

19A.A Klyachko, B. Öztop and A.S. Shumovsky, Phys. Rev. A 75, 032315 (2007).
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BH entropy and environment entropy

One could think that the physical Hilbert spaces of the two

subsystems have to take into account only the number of modes truly

occupied, at any stage of the evaporation ⇒ the actual dimensions

would be 2NI
(σ), and 2NII

(σ) and we can decompose:

2N = 2NII
(σ) × 2NI

(σ) ≡ n×m

n = 2N , 2N−1, . . . , 1, and m = 1, . . . , 2N−1, 2N .

We define the Bekenstein/environment entropy as

SBH ≡ lnn = N ln 2 cos2 σ , Senv ≡ lnm = N ln 2 sin2 σ .
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Entropy comparison

Plot of S
I
, SBH and Senv for N = 1000:
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These satisfy

SI ≤ SBH + Senv = Smax
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Wheeler–DeWitt equation

|Ψ(σ)〉 can be written as

|Ψ(σ)〉 ≡ e−i σ G |Ψ(0)〉

where

G = i

N∑
n=1

(
a†n bn − b†n an

)
|Ψ(σ)〉 solves Wheeler–DeWitt equation20

H |Ψ(σ)〉 = 0

H ≡ i ∂σ −G. This constrains K to H.
20C. Rovelli, Quantum gravity, (Cambridge University Press, Cambridge, 2004).
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Duality with a TFD-like model (1)

Consider the canonical transformation (non-connected with the

identity)

An = an , Bn = b†n

Vacua in the new representation are defined as

An |0〉A = Bn |0〉B = 0

One can check that

|0〉A = |0〉I , |0〉B = |11 12 . . . 1N 〉II
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Duality with a TFD-like model (2)

In this representation

G = i

N∑
n=1

(
A†nB

†
n − BnAn

)
Therefore |Ψ(σ)〉 has a TFD-vacuum-like structure

|Ψ(σ)〉 = e−
1
2SA(σ) |I〉 = e−

1
2SB(σ) |I〉 (1)

|I〉 = exp
(∑N

n=1 A
†
nB
†
n

)
|0〉A ⊗ |0〉B , and

SA = −
N∑
n=1

(
A†nAn ln sin2 σ +AnA

†
n ln cos2 σ

)
SB = −

N∑
n=1

(
B†nBn ln sin2 σ +BnB

†
n ln cos2 σ

)
32



Formation of matter and geometry

• When the system evolves, a pair of A and B particles is created.

The B-modes enter into the BH, annihilating BH modes, while

the A-modes form the environment

• Xons do not discern fields and spacetime dof. However some dof

are indeed responsible for the reduction of the BH’s horizon area

during the evaporation and annihilators of geometric modes can

be defined. As first (linear) approximation, we can decompose An
as

An =
∑
k

(
gk,nA

k
G,n ⊗ 1IF,n + fk,n 1IG,n ⊗AkF,n

)

where k labels the emergent modes.
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Identification of parameters

A quantum of BH horizon area measures ∆A = α l2P . Then

SBH =
αN

4

N is the number of Planck cells = number of slots. In our model

α = 4 ln 2

This value agrees with the condition α = 4 ln k, with k integer, which

was proposed to constrain the number of microstates to an integer21.

A comparison with BH formula, when Q0 = 0 = J0, gives

N =
4πM2

0

l2P ln 2

21S. Hod, Phys. Rev. Lett. 81, 4293 (1998).
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Conclusions and Perspectives



Conclusions

• BB implies that Hilbert space of every local system is finite

dimensional

• This Hilbert space describes fundamental modes (Xons)

• Matter/fields and spacetime emerge from Xons dynamics

• Reversing the point of view, and starting from fermionic Xons

dynamics, one can prove that a maximum entropy should exist,

for the BH/environment system, during BH evaporation

(Page-like behavior)22

• The maximum entropy corresponds to the entropy of initial BH

⇒ Xons formulation of BB

• Our model of Xons dynamics can be mapped into a TFD-like

model, where Xons particle/hole pair are created on vacuum

• Prediction of ∆A/l2P ratio

22G. Acquaviva, A. Iorio and L.S., Phys. Rev. D 102, 106002 (2020).
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Perspectives

• Research of complete mapping from Xons to emergent spacetime

and fields

• Connection with specific theories of quantum gravity

• Comparison with other approaches to Page-curve23 24

• Research of phenomenological implications

• Emergence of different phases25

23A. Almheiri, R. Mahajan, J. Maldacena and Y. Zhao,JHEP 03, 149 (2020).
24F. F. Gautason, L. Schneiderbauer, W. Sybesma and L. Thorlacius, JHEP 05,

091 (2020).
25G. Acquaviva, A. Iorio and L.S., in preparation.
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Thank you for the attention!
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