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TMCI In the presence of detuning impedance

E. Métral, X. Buffat and G. Rumolo

¢ Motivation: recent pyHEADTAIL simulations for the CERN PS (by
M. Migliorati, 2019) revealed that the detuning impedance can have a
destabilising effect

=> Started to review in detail the theory of all

transverse instabilities with detuning impedance
(see https://cds.cern.ch/record/2714848/files/CERN-ACC-NOTE-2020-0019.pdf)
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@ Contents

¢ Introduction

¢ TMCI for a single bunch (Q' = 0)

* Theory with 2-particle model => See next talk by G. Rumolo with all
the detailed computations

®= Theory of circulant matrix formalism with 2 or more azimuthal
modes but still 1 radial mode

= Comparison with simulation of circulant matrix formalism with many
azimuthal modes but still 1 radial mode (from BimBim code)

®= Full BimBim simulation of circulant matrix formalism with many
azimuthal modes and many radial modes

¢ Coasting-beams => See next talk by N. Biancacci with a new
Instability mechanism identified

¢ Conclusion and outlook
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D) Intro: Past simulations for SPS TMCI
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frtp=2.8

o Headtail simulations Mode spectrum of the coherent motion as a function of bunch current
for the broadband impedance of a flat chamber

Growth rates for a round chamber and a flat chamber
(HEADTAIL simulations with a broadband impedance)
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=> Can we fully understand them?



& Intro: Past simulations for SPS TMCI

¢ As we will see, it is important to differentiate between the “short-
bunch” regime (TMCI between modes 0 and -1) and the “long-
bunch” regime (TMCI between higher-order modes)
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& Intro: Past simulations for SPS TMCI

¢ As we will see, it is important to differentiate between the “short-
bunch” regime (TMCI between modes 0 and -1) and the “long-
bunch” regime (TMCI between higher-order modes)

¢ Furthermore, one has to be careful when we mention the beneficial
or detrimental effect of the detuning impedance, depending on what
we compare it to => As can be seen already in the past HEADTAIL
simulations for the x-plane

= Beneficial effect of the asymmetry => Threshold ~ 2 times higher

= But (slight) detrimental effect of the detuning impedance wrt to
the driving impedance as the gain from the driving impedance
only would have been 24/n? =~ 2.4
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Circulant matrix formalism (1 radial mode)

¢ See A. Burov and V. Danilov, “Suppression of transverse
bunch instabilities by asymmetries in the chamber
geometry”, Phys. Rev. Lett. 82, 2286 (1999) => Followed
the  formalism from Danilov-Perevedentsev 1997
(Feedback system for elimination of the TMCI, Nucl. Instr.
and Methods, A391, 77)
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Circulant matrix formalism (1 radial mode)

¢ Using the “air-bag” model with a constant wake (given
below as the constant term of a resonator wake, which will
be used after) and considering first only 2 modes (0 and
-1), the system is fully described by the following matrix to

be diagonalized

K
-1+ E Inorm

Zlnorm
T (—1- )

N e? w? R, D(2)

2 Inorm |
1O (1~ k)

I
" (<14 K)

Lorm = X —— K= —
2y my wp ws € Q @r Wy (2) + 1 in x for CRW flat chamber
- 1/2 in y for CRW flat chamber
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Circulant matrix formalism (1 radial mode)
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Circulant matrix formalism (1 radial mode)
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Circulant matrix formalism (1 radial mode)
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Circulant matrix formalism (1 radial mode)
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Circulant matrix formalism (1 radial mode)

Kk=0.4
0-
\\
-1
E |
q;‘ L
m L
-2
3
_47 w w s s ! w \ \ \ ! ‘ ‘ ‘ ‘ ! ‘ ‘ ‘ ‘
0 1 2 3 4
Inorm

E. Métral, 8th LER Workshop (in remote), 27/10/2020 7



Circulant matrix formalism (1 radial mode)
k=0.5
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Circulant matrix formalism (1 radial mode)
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Circulant matrix formalism (1 radial mode)
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Circulant matrix formalism (1 radial mode)
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Circulant matrix formalism (1 radial mode)
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Circulant matrix formalism (1 radial mode)
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Circulant matrix formalism (1 radial mode)
k=11

1

Re, Im

S 12 3 a

Inorm

E. Métral, 8th LER Workshop (in remote), 27/10/2020 7



Circulant matrix formalism (1 radial mode)
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Circulant matrix formalism (1 radial mode)
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Circulant matrix formalism (1 radial mode)
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Circulant matrix formalism (1 radial mode)
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Circulant matrix formalism (1 radial mode)
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Circulant matrix formalism (1 radial mode)
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Circulant matrix formalism (1 radial mode)
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Circulant matrix formalism (1 radial mode)
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Circulant matrix formalism (1 radial mode)
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Circulant matrix formalism (1 radial mode)
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Circulant matrix formalism (1 radial mode)
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Circulant matrix formalism (1 radial mode)
k=-1.1

Re, Im




Circulant matrix formalism (1 radial mode)
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Circulant matrix formalism (1 radial mode)
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Circulant matrix formalism (1 radial mode)
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Circulant matrix formalism (1 radial mode)

¢ Considering now a BBR impedance and many azimuthal
modes (but still 1 radial mode), an excellent agreement is
obtained between theory and simulation (vs. the bunch length)
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Circulant matrix formalism (1 radial mode)

¢ Considering now a BBR impedance and many azimuthal
modes (but still 1 radial mode), an excellent agreement is
obtained between theory and simulation (vs. the bunch length)

Theory BimBim simulation (X. Buffat)
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__ “Long-bunch” regime
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Figure 6: Comparison between theory (left) and the
BimBim code (right) for the case of a broad-band resona-
tor impedance with| f. t, = 2.8] (a) k = 0; (b) kx = —1;
(c)k = +1.
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Figure 6: Comparison between theory (left) and the
BimBim code (right) for the case of a broad-band resona-
tor impedance with| f. t, = 2.8] (a) k = 0; (b) kx = —1;
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Figure 6: Comparison between theory (left.) and the

BimBim code (right) for the case of a broad-band resona-

tor impedance with| f. t, = 2.8] (a) k = 0; (b) kx = —1;

(c)k = +1.
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& I __ “Long-bunch” regime
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Circulant matrix formalism (>1 radial modes)

Re(AQ) [Q,]

X. Buffat (BimBim code)
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=> Similar intensity thresholds as before (with change of modes
which couple), similar to past HEADTAIL simulations
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@ﬂ Conclusion and outlook

¢ Huge effort started in the CERN HSC section since ~ 1 year to try and
fully understand the effect of the detuning impedance on beam stability
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@ Conclusion and outlook

¢ Huge effort started in the CERN HSC section since ~ 1 year to try and
fully understand the effect of the detuning impedance on beam stability

¢ The case of the single-bunch TMCI (for Q' = 0) was discussed here

= “Short-bunch” regime with a constant wake: Only a beneficial effect is
predicted wrt to the driving impedance

= “Long-bunch” regime with a BBR impedance: a detrimental effect is
predicted wrt to the driving impedance (as it was in fact already observed in
past HEADTAIL simulations)

¢ Meanwhile, a general theory for bunched beams has been developed
by G. ladarola et al.: “Linearized method for the study of transverse

Instabilities driven by electron clouds”, PRAB 23, 081002, 2020
(https://journals.aps.org/prab/abstract/10.1103/PhysRevAccelBeams.23.081002)
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