

TMCI in the presence of detuning impedance

E. Métral, X. Buffat and G. Rumolo

TMCI in the presence of detuning impedance

E. Métral, X. Buffat and G. Rumolo

 Motivation: recent pyHEADTAIL simulations for the CERN PS (by M. Migliorati, 2019) revealed that the detuning impedance can have a destabilising effect

TMCI in the presence of detuning impedance

E. Métral, X. Buffat and G. Rumolo

◆ **Motivation**: recent pyHEADTAIL simulations for the CERN PS (by M. Migliorati, 2019) revealed that the detuning impedance can have a destabilising effect

=> Started to review in detail the theory of all transverse instabilities with detuning impedance (see [https://cds.cern.ch/record/2714848/files/CERN-ACC-NOTE-2020-0019.pdf\)](https://cds.cern.ch/record/2714848/files/CERN-ACC-NOTE-2020-0019.pdf)

Contents

Introduction

- \blacklozenge TMCI for a single bunch $(Q' = 0)$
	- *Theory with 2-particle model => See next talk by G. Rumolo with all the detailed computations*
	- **Theory of circulant matrix formalism with 2 or more azimuthal** modes but still 1 radial mode
	- Comparison with simulation of circulant matrix formalism with many azimuthal modes but still 1 radial mode (from BimBim code)
	- **Full BimBim simulation of circulant matrix formalism with many** azimuthal modes and many radial modes
- *Coasting-beams => See next talk by N. Biancacci with a new instability mechanism identified*
- ◆ Conclusion and outlook area

Intro: Past simulations for SPS TMCI

=> Can we fully understand them?

E. Métral, 8th LER Workshop (in remote), 27/10/2020 3

Intro: Past simulations for SPS TMCI

 As we will see, it is important to differentiate between the **"shortbunch" regime** (TMCI between modes 0 and -1) and the **"longbunch" regime** (TMCI between higher-order modes)

Intro: Past simulations for SPS TMCI

- ◆ As we will see, it is important to differentiate between the "short**bunch" regime** (TMCI between modes 0 and -1) and the **"longbunch" regime** (TMCI between higher-order modes)
- Furthermore, one has to be careful when we mention the beneficial or detrimental effect of the detuning impedance, depending on what we compare it to \Rightarrow As can be seen already in the past HEADTAIL simulations for the x -plane
	- **Beneficial effect of the asymmetry** => Threshold ~ 2 times higher
	- But (slight) **detrimental effect of the detuning impedance wrt to the driving impedance** as the gain from the driving impedance only would have been $24/\pi^2 \approx 2.4$

◆ See A. Burov and V. Danilov, "Suppression of transverse bunch instabilities by asymmetries in the chamber geometry", Phys. Rev. Lett. 82, 2286 (1999) => Followed the formalism from Danilov-Perevedentsev_1997 (Feedback system for elimination of the TMCI, Nucl. Instr. and Methods, A391, 77) $d^2x(b)$

$$
\left.\int_L F_x ds = -q^2 x_0 W_x(z) + q^2 x D(z)\right|_{\substack{d=d\\F_x(\phi) = -\frac{Nq^2}{2\pi\gamma mL}\int_{-|\phi|}^{|\phi|} (W(z)x(\phi') - D(z)x(\phi)) d\phi'\\ \int_L F_y ds = -q^2 y_0 W_y(z) - q^2 y D(z)\right|_{\substack{d\\dt\\dt\\=\frac{\partial}{\partial t} + \omega_s \frac{\partial}{\partial \phi}, \quad z = a \cos \phi - a \cos \phi'\\ \left(\omega - \frac{\partial}{\partial t} + \omega_s \frac{\partial}{\partial \phi}\right)},
$$

 Using the **"air-bag" model** with a **constant wake** (given below as the constant term of a resonator wake, which will be used after) and considering first only **2 modes (0 and -1)**, the system is fully described by the following matrix to be diagonalized

$$
\left[\begin{array}{cc} -1 + \frac{\kappa}{2} I_{norm} & \frac{2 I_{norm}}{\pi^2} (1 - \kappa) \\ \frac{2 I_{norm}}{\pi^2} (-1 - \kappa) & \frac{I_{norm}}{2} (-1 + \kappa) \end{array}\right]
$$

$$
I_{norm} = \frac{N e^2}{2 \gamma m_0 \omega_\beta \omega_s C} \times \frac{\omega_r^2 R_t}{Q \overline{\omega_r}}
$$

$$
\kappa = \frac{D(z)}{W_x(z)}
$$

E. Métral, 8th LER Workshop (in remote), 27/10/2020 7

E. Métral, 8th LER Workshop (in remote), 27/10/2020 7

E. Métral, 8th LER Workshop (in remote), 27/10/2020 7

E. Métral, 8th LER Workshop (in remote), 27/10/2020 7

E. Métral, 8th LER Workshop (in remote), 27/10/2020 7

E. Métral, 8th LER Workshop (in remote), 27/10/2020 7

E. Métral, 8th LER Workshop (in remote), 27/10/2020 7

E. Métral, 8th LER Workshop (in remote), 27/10/2020 7

E. Métral, 8th LER Workshop (in remote), 27/10/2020 7

E. Métral, 8th LER Workshop (in remote), 27/10/2020 7

Circulant matrix formalism (1 radial mode) $\kappa = 1.0$ **0 1 2 3 4** -4^{0}_{0} **- 3 - 2 - 1 0 1** *Inorm Re, Im*

E. Métral, 8th LER Workshop (in remote), 27/10/2020 7

E. Métral, 8th LER Workshop (in remote), 27/10/2020 7

E. Métral, 8th LER Workshop (in remote), 27/10/2020 7

E. Métral, 8th LER Workshop (in remote), 27/10/2020 7

Circulant matrix formalism (1 radial mode) $\kappa = -0.2$ **0 1 2 3 4** -4^{0}_{0} **- 3 - 2 - 1 0 1** *Inorm Re, Im*

E. Métral, 8th LER Workshop (in remote), 27/10/2020 7

E. Métral, 8th LER Workshop (in remote), 27/10/2020 7

E. Métral, 8th LER Workshop (in remote), 27/10/2020 7

E. Métral, 8th LER Workshop (in remote), 27/10/2020 7

E. Métral, 8th LER Workshop (in remote), 27/10/2020 7

E. Métral, 8th LER Workshop (in remote), 27/10/2020 7

E. Métral, 8th LER Workshop (in remote), 27/10/2020 7

E. Métral, 8th LER Workshop (in remote), 27/10/2020 7

E. Métral, 8th LER Workshop (in remote), 27/10/2020 7

E. Métral, 8th LER Workshop (in remote), 27/10/2020 7

area *See aslo G. Rumolo's talk (similar results)*

E. Métral, 8th LER Workshop (in remote), 27/10/2020 8

E. Métral, 8th LER Workshop (in remote), 27/10/2020 8

E. Métral, 8th LER Workshop (in remote), 27/10/2020 8

 Considering now a **BBR impedance** and **many azimuthal modes** (but still 1 radial mode), an excellent agreement is obtained between theory and simulation (vs. the bunch length)

 Considering now a **BBR impedance** and **many azimuthal modes** (but still 1 radial mode), an excellent agreement is obtained between theory and simulation (vs. the bunch length)

"Long-bunch" regime

Figure 6: Comparison between theory (left) and the BimBim code (right) for the case of a broad-band resonator impedance with $f_r \tau_b = 2.8$ (a) $\kappa = 0$; (b) $\kappa = -1$; (c) $\kappa = +1$.

"Long-bunch" regime

 \Rightarrow Detrimental effect of the detuning impedance wrt to the driving impedance for the horizontal plane $(\kappa = +1)$

Figure 6: Comparison between theory (left) and the BimBim code (right) for the case of a broad-band resonator impedance with $f_r \tau_b = 2.8$ (a) $\kappa = 0$; (b) $\kappa = -1$; (c) $\kappa = +1$.

Figure 6: Comparison between theory (left) and the BimBim code (right) for the case of a broad-band resonator impedance with $f_r \tau_b = 2.8$ (a) $\kappa = 0$; (b) $\kappa = -1$; (c) $\kappa = +1$.

"Long-bunch" regime

- \Rightarrow Detrimental effect of the detuning impedance wrt to the driving impedance for the horizontal plane $(\kappa = +1)$
- \Rightarrow But beneficial effect of the detuning impedance / asymmetry wrt symmetric case (as the driving impedance is much smaller)!

Figure 6: Comparison between theory (left) and the BimBim code (right) for the case of a broad-band resonator impedance with $f_r \tau_b = 2.8$ (a) $\kappa = 0$; (b) $\kappa = -1$; (c) $\kappa = +1$.

"Long-bunch" regime

- \Rightarrow Detrimental effect of the detuning impedance wrt to the driving impedance for the horizontal plane $(\kappa = +1)$
- \Rightarrow But beneficial effect of the detuning impedance / asymmetry wrt symmetric case (as the driving impedance is much smaller)!

One should be careful when comparing the different κ -cases, as for each case I_{norm} is normalised by the dipolar impedance (which includes a Yokoya dipolar factor [13]): 1 for round ($\kappa = 0$), $\pi^2/24$ for flat x ($\kappa = 1$) and $\pi^2/12$ for flat y ($\kappa = -1/2$). Applying this to the

=> Similar intensity thresholds as before (with change of modes which couple), similar to past HEADTAIL simulations

E. Métral, 8th LER Workshop (in remote), 27/10/2020 12

Huge effort started in the CERN HSC section since \sim 1 year to try and fully understand the effect of the detuning impedance on beam stability

- Huge effort started in the CERN HSC section since \sim 1 year to try and fully understand the effect of the detuning impedance on beam stability
- \blacklozenge The case of the single-bunch TMCI (for $Q' = 0$) was discussed here

- Huge effort started in the CERN HSC section since \sim 1 year to try and fully understand the effect of the detuning impedance on beam stability
- \blacklozenge The case of the single-bunch TMCI (for $Q' = 0$) was discussed here
	- **"Short-bunch" regime with a constant wake**: Only a **beneficial effect** is predicted wrt to the driving impedance

- Huge effort started in the CERN HSC section since \sim 1 year to try and fully understand the effect of the detuning impedance on beam stability
- \blacklozenge The case of the single-bunch TMCI (for $Q' = 0$) was discussed here
	- **"Short-bunch" regime with a constant wake**: Only a **beneficial effect** is predicted wrt to the driving impedance
	- **"Long-bunch" regime with a BBR impedance**: a **detrimental effect** is predicted wrt to the driving impedance (as it was in fact already observed in past HEADTAIL simulations)

- Huge effort started in the CERN HSC section since \sim 1 year to try and fully understand the effect of the detuning impedance on beam stability
- \blacklozenge The case of the single-bunch TMCI (for $Q' = 0$) was discussed here
	- **"Short-bunch" regime with a constant wake**: Only a **beneficial effect** is predicted wrt to the driving impedance
	- **"Long-bunch" regime with a BBR impedance**: a **detrimental effect** is predicted wrt to the driving impedance (as it was in fact already observed in past HEADTAIL simulations)
- Meanwhile, a general theory for bunched beams has been developed by G. Iadarola et al.: "Linearized method for the study of transverse instabilities driven by electron clouds", PRAB 23, 081002, 2020 ([https://journals.aps.org/prab/abstract/10.1103/PhysRevAccelBeams.23.081002\)](https://journals.aps.org/prab/abstract/10.1103/PhysRevAccelBeams.23.081002)