

MKPL impedance measurements with and without serigraphy

M. Barnes, O. Bjorkqvist, C. Zannini Ack.: P. Blaise, L. Ducimetiere, Y. Sillanoli

MKP configuration

Beam induced power loss

MKP-I: Impedance considerations, C. Zannini et al., <u>LIU-SPS 50 ns Injection</u> <u>System for Pb Ions Review</u>, 4 October 2013 (<u>slides</u>).

Present MKPs could strongly suffer of beam induced heating with high intensity beam

2018 thermal behavior of MKPL, MKPS and MKE

Reached high temperatures even without dedicated scrubbing, just from nominal operation and high intensity studies on Thursdays

Operational Scenarios for SPS

onfident: Bel	l <mark>ow Tc (Cur</mark> i	ie Te	mp.)			Designate			Dortosile Ci	overni.	Dumala 9	Carla Zannin
ould exceed Tc: risk of mis-kicking beam Basic table courtesy Hannes Bartosik, Glovanni Rumolo & Carlo Zannir												
sk of mecha	nical dama	ge						resulting average	resulting average power loss per			
ery low risk o	of damage		Injected	Exrtracted	duty		module length	power loss	module	duration		Ferrite
ot OK (> Tc) ^{er}	nario	trains	p/b	p/b	cycle	cycle type	[m]	[W/m]	[W/module]	(hours)	repetition	Temperature
	2018 operation	3x48	1.33E+11	1.20E+11	50%	acceleration	0.7	149	104	1.5	every 12 hours	ОК
	2018 MD	4x48	1.80E+11	1.80E+11	50%	flat bottom	0.7	164	115	10	once per week	ОК
scrubbing week	2021 scrubbing	4x72	1.50E+11	1.50E+11	70%	flat bottom	0.7	239	167	continuous	continuous	ОК
typical week	2021 operation	4x48	1.44E+11	1.30E+11	50%	acceleration	0.7	220	154	1.5	every 12 hours	ОК
	2021 MD	4x72	1.67E+11	1.50E+11	50%	acceleration	0.7	443	310	10	once per week	ОК
scrubbing week	2022 scrubbing	4x72	2.00E+11	2.00E+11	70%	flat bottom	0.7	424	297	continuous	continuous	Exceeds TC
typical week	2022 operation	4x48	1.67E+11	1.50E+11	50%	acceleration	0.7	296	207	1.5	every 12 hours	ОК
	2022 MD	4x72	2.22E+11	2.00E+11	50%	acceleration	0.7	783	548	10	once per week	Close to TC
scrubbing week	2023 scrubbing	4x72	2.60E+11	2.60E+11	70%	flat bottom	0.7	717	502	continuous	continuous	Not OK
typical week	2023 operation	4x48	2.00E+11	1.80E+11	50%	acceleration	0.7	424	297	1.5	every 12 hours	Exceeds TC
	2023 MD	4x72	2.56E+11	2.30E+11	50%	acceleration	0.7	1074	752	10	once per week	Not OK
typical week	2024 operation	4x48	2.00E+11	1.80E+11	50%	acceleration	0.7	424	297	1.5	every 12 hours	Exceeds TC
	2024 MD	4x72	2.56E+11	2.30E+11	50%	acceleration	0.7	1074	752	10	once per week	Not OK

MKP impedance reduction

Concept with longitudinal serigraphy exists (4, 5 and 6 stripes)

-	667.00 mr						
	Q20	PL per LHC fill cycle					
	MKP-L	874 W					
	MKP-S	234 W					
	MKP-L ser. (6 stripes)	28 W					
	MKP-L ser. (4 stripes)	99 W					

Impact on beam stability has been studied and estimated to be negligible

C. Zannini, I. Karpov, Impact of new MKP-L serigraphy, summary from BD analysis. Presented at the LIU-SPS coordination meeting, March 2020.

MKP impedance measurements

MKP impedance measurements

probably due to the effect of wire and terminations

Summary

- The MKPL was predicted to suffer of beam induced heating with LIU beam already in 2013
 - 2018 temperature data confirm the criticality of the kicker
- The MKPL is expected to limit operation and scrubbing during run III
- Impedance mitigation solution is available and validated with impedance measurements
 - Ongoing: simulation of the measurement setup (C. Antuono)

Thank you very much for your attention