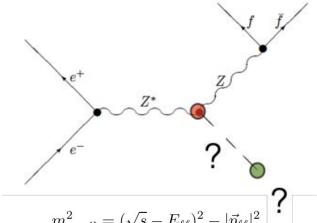


Recoil Mass Searches

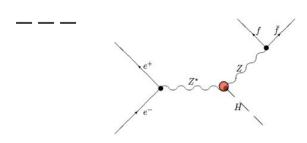
FCC-ee Physics Performance Meeting October 19th, 2020

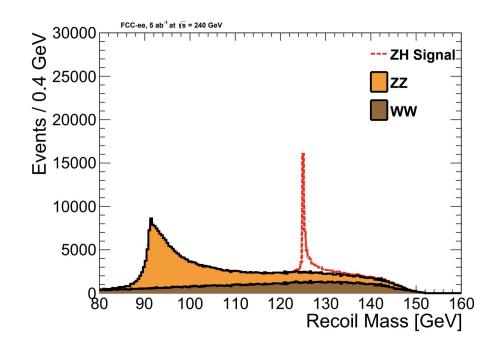

Markus Klute - MIT

Overview

Higgs cross section (HZ) studied leptonic channel

Higgs to invisible searches studied leptonic and hadronic channels


Searches for new scalars started with leptonic channel


 $m_{\text{recoil}}^2 = (\sqrt{s} - E_{\ell\ell})^2 - |\vec{p}_{\ell\ell}|^2$

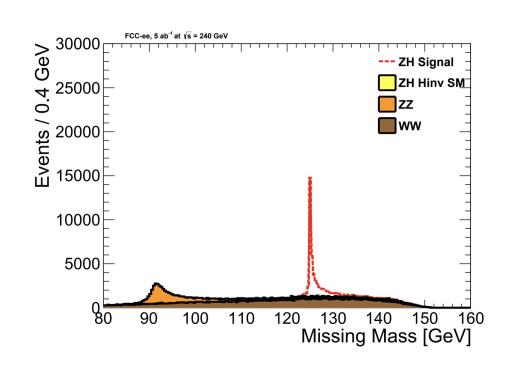
Studies performed using Delphes and Whizard / Madgraph.

ZH Cross Section

Dominante background WW and ZZ

Main selection: Z mass, Z trans. and long. momentum, accolinearity, ...

Cross section uncertainty of 0.7% with 5ab⁻¹ at 240 GeV


Looking at hadronic channel and adding mass measurement.

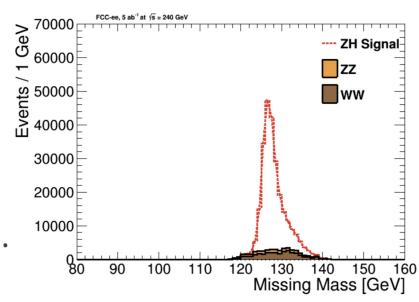
Higgs to invisible searches - leptonic channel

Dominante background WW and ZZ

Main selection: Z mass, Z trans. and long. momentum, accolinearity, veto other activity

Upper limit with 5ab⁻¹ at 240 GeV of 0.5% on Higgs branching ratio to invisible

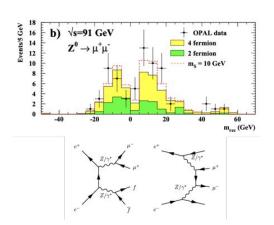
Also studied here https://arxiv.org/abs/1605.00100


Higgs to invisible searches - hadronic channel

Dominante background WW and ZZ

Main selection: Z mass, lepton veto, limit add. hadronic activity

First pass demonstrates power of the hadronic channel

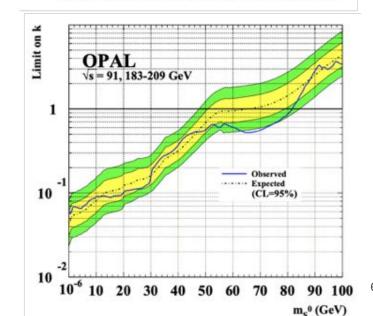

Z(vv)H(bb) sample not yet included. Can we rejected with visible mass cut.

Further optimization with b-tag category, ML, ...

Searches for new scalar

Decay-moo scalar boson

Decay-mode independent searches for new scalar bosons with the OPAL detector at LEP


The OPAL Collaboration

Abstract

This paper describes topological searches for neutral scalar bosons S^0 produced in association with a Z^0 boson via the Bjorkon process $e^+e^- \to S^0Z^0$ at centre-of-mass energies of 91 GeV and 183-299 GeV. These searches are based on studies of the recoil mass spectrum of $Z^0 \to e^+e^-$ and $\mu^+\mu^-$ events and on a search for S^0Z^0 with $Z^0 \to \nu\rho$ and $S^0 \to e^+e^-$ or photons. They cover the decays of the S^0 into an arbitrary combination of hadrons, leptons, photons and invisible particles as well as the possibility that it might be stable.

No indication for a signal is found in the data and upper limits on the cross section of the Bjorken process are calculated. Cross-section limits are given in serms of a scale factor k with respect to the Standard Model cross section for the Higgs-strahlung process $e^+e^- \rightarrow H_{0,2}^*Z^0$.

These results can be interpreted in general scenarios independently of the decay modes of the \$0. The examples considered here are the production of a single new scalar particle with a decay width smaller than the detector mass resolution, and for the first time, two scenarios with continuous mass distributions, due to a single very broad state or several states close in mass.

Searches for new scalar

Explore complete FCC-ee dataset

Phase	Run duration (years)	Center-of-mass Energies (GeV)	Integrated Luminosity (ab ⁻¹)	Event Statistics
FCC-ee-Z	4	88-95	150	3×10^{12} visible Z decays
FCC-ee-W	2	158-162	12	10 ⁸ WW events
FCC-ee-H	3	240	5	10 ⁶ ZH events
FCC-ee-tt	5	345-365	1.5	10 ⁶ tt̄ events

Model independent search to be complemented by search with explicit scalar boson signatures

Conclusion

Retraining team for FCC-ee studies

Aiming to extend, document, and preserve set of FCC-ee studies.

Focus on detector qualification

Studying

- ZH cross section and mass
- Higgs to invisible (leptonic and hadronic channels)
- Scalar boson search
- Higgs to bb,cc,gg couplings (not mentioned here)