

Update on jet flavour tagging using ParticleNet

Loukas Gouskos (CERN) and Michele Selvaggi (CERN)

Introduction

- General goal of the study:
 - Flavour identification (tagging) at FCCee
 - Application on challenging physics processes, e.g., $ZH(\rightarrow bb/cc/gg)$
 - Aid the detector's design (i.e, inner tracking)
- Recap from last FCC-ee Physics Performance meeting (Sep 21):
 - presented a first implementation of flavour tagging algorithm [slides]
 - Based solely on low-level features [i.e. PF candidates]
 - Precesses $[Z(\rightarrow vv)H\rightarrow (bb/cc/ss/uu(dd)/gg)]$ generated using MG5+P8
 - Detector response simulated using Delphes
 - FastTrackCovariance [from Franco Bedeschi] included
 - Jets clustered using the generalized kT algorithm with R=1.5
 - Another area to study further
- Short term plans:
 - Optimize the flavour tagging algorithm
 - Compare performance with BDT-based approach [i.e. higher level inputs]
 - Compare performance between FullSIM and Delphes
- Today:
 - Algorithm optimization + comparison between CLD and IDEA

Loukas Gouskos

CERN

ParticleNet for jet tagging at the FCCee

Input variables: IDEA

- Comparison of the input distributions for different jet flavours:
 - <u>https://selvaggi.web.cern.ch/selvaggi/FCC/FCCee/FlavourTagging/flavour/</u>
 - Includes also comaprisons for different clustering algorithms and detector configurations (IDEA vs. CLD)

Input variables: CLD

- Comparison of the input distributions for different jet flavours:
 - <u>https://selvaggi.web.cern.ch/selvaggi/FCC/FCCee/FlavourTagging/flavour/</u>
 - Includes also comaprisons for different clustering algorithms and detector configurations (IDEA vs. CLD)

Output scores: b and c tagging

- Improvement in performance mainly due to optimization of the training details (sample size, training configuration..)
- Small tweaks in the input features and #of particles

Loukas Gouskos

c-tagging

- B-tagging: ~95 (85)% eff, for ~1% ud (g) mistag
- C-tagging: ~75 (65)% eff, for ~1% ud (g/b) mistag

NB: based on Delphes samples [parametrized response, no
fakes..]Loukas GouskosFCCee Physics Performance meeting; Mon. Oct 19, 2020

VUnderstanding performance: c-tagging

- Perform algorithm training using different sets of inputs:
 - "Kin": PF candidate 4-vector
 - **"Kin+id":** "kin" + PF charge and PF type [el, mu, γ, nhadron, chadron]
 - **"Kin+id+dis/ment":** "kin + id" + info related to track displacement
 - Nominal version of tagger [used for the previous slides]

Understanding performance: c-tagging

Loukas Gouskos

Understanding performance: b-tagging

Loukas Gouskos

CÉRN

Understanding performance:qg tagging

• On the other hand:

we do not expect big difference in light quark-gluon separation on top of "kin" set of inputs

Comparison with BDT

FCCee Physics Performance meeting; Mon. Oct 19, 2020

Comparison: IDEA vs. CLD

- No big differences between in input variables between IDEA & CLD
 - small difference in material budget observed on light jets since dxy ~ 0
 - expect slightly better performance for IDEA detector for discrimination vs light

Comparison: IDEA vs. CLD [c-tagging]

Loukas Gouskos

Back of the envelop estimate:

- FCCee: σ (ZH) = 200 fb, L = 5ab-1(2IP) ~ 1M ZH events

[600k H \rightarrow bb, 100k H \rightarrow gg, 30k H \rightarrow cc]

- Scenario:

OLD: c-tag: 70%, b-mistag: 10%, g-mistag:~10%

NEW: c-tag: **80%**, b-mistag: **2.5%**, g-mistag:~**2.5%**

 $\delta(\sigma BR)/\sigma BR (\%) \sim 1.5 \rightarrow 1.0$ [no systematics]

- Improved b/g rejection resulted to $\sim 1\%$ uncertainty (not yet optimize detector design)

- A first version of a jet identification algorithm based on PF candidates and advanced ML in place
 - Results promising [that beg scrutiny!]
- Next [short term] steps:
 - Compare performance with existing BDT-based algorithms using the same events (FastSim low-level vs High level)
 - Partially shown here but $H \rightarrow jj vs. Z \rightarrow jj$
 - Compare Delphes vs. FullSim (both using "low" and "high" level training)
 - Check the impact of perfect PID on tagging performance
- Next [med-term] steps:
 - Add reco. vertex information in "low level" training (cf. Clement's talk)
 - Check impact of V0 rejection
 - Optimize vertex detector

Backup

Loukas Gouskos

IDEA vs CLD material budget

