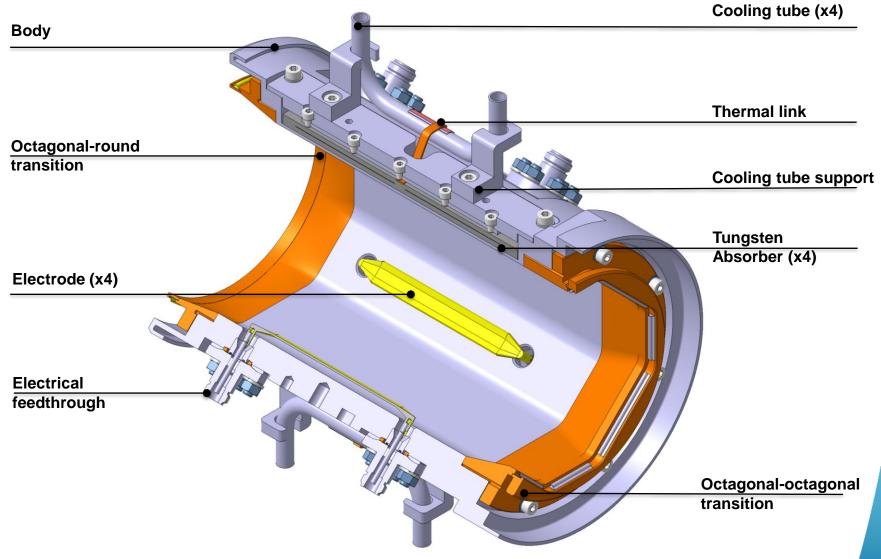


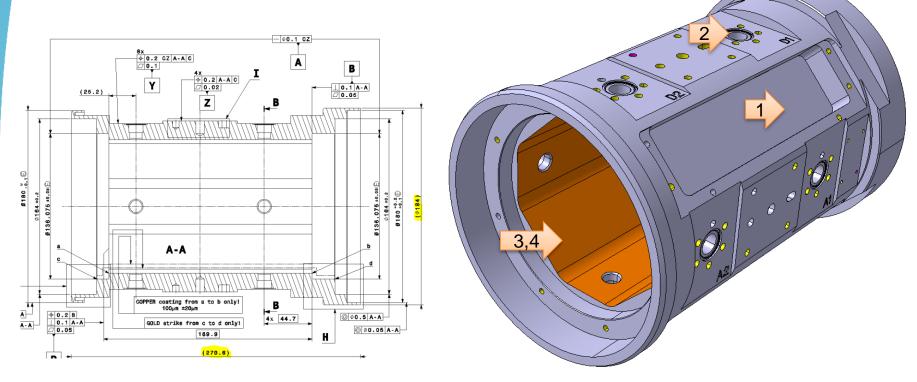
Manufacturing Study, Pre-production and Quality

HL-LHC WP13 Beam Instrumentation


D. Gudkov, G. Schneider, M. Krupa

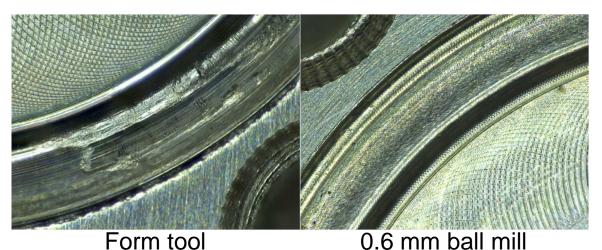
Content

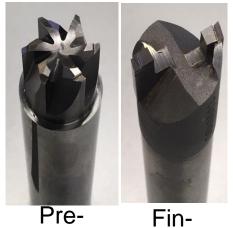
- Details of components manufacturing
 - BPM Body
 - Machining
 - Coatings
 - Welding
 - Relevant tooling
 - Prototypes and tests at CERN
 - Transitions
 - Electrodes
 - Cooling links
 - Assembly
 - Amorphous carbon coating
- Identification of work for BINP and CERN
- Quality assurance


Most representative cases (B-type)

Body (Vacuum Chamber, LHCBPMQST_B0009)

- 1. Material: CERN material spec. 1001 for 1.4429 round, forged blanks
- 2. Machined ConFlat interfaces
- 3. Octagonal shape (electroerosion wire cutting)
- 4. Copper electroplating 0.1 mm (with gold flash for adhesion)

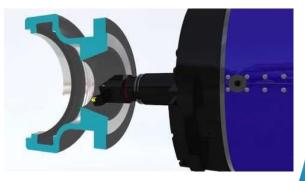




Body (Vacuum Chamber, LHCBPMQST_B0009)

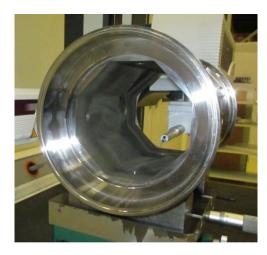
2. Machined ConFlat interfaces: Trial of machining by different methods have been performed (Report in EDMS 2302967):

- Form tool
- Ball Mill



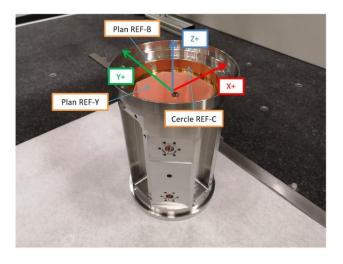
- Machining time is identical
- Both methods provide leak tightness
- Ball mill: better surface finish

+ 3rd method, use of boring head with automatic transversal feed (proposed by BINP): <u>here</u> and <u>here</u>



Dmitry Gudkov, BE-BI-ML

Body (Vacuum Chamber, LHCBPMQST_B0009)

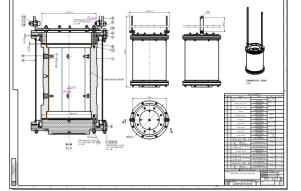

3. Octagonal shape (electroerosion wire cutting)

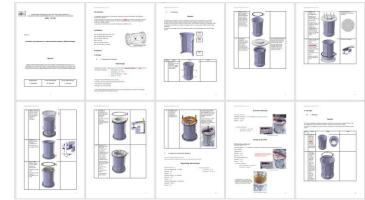
EDMS <u>2254544</u>

Surface dimensions: Length 190 mm Octagonal 119.7 x 125.1 Obtained roughness Ra3.2

4. Copper electroplating 0.1 mm (with gold flash for adhesion)

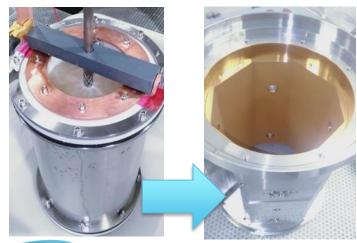
Obtained roughness <Ra3.2

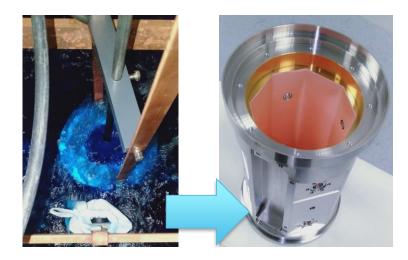



Body (Vacuum Chamber, <u>LHCBPMQST_B0009</u>)

4. Copper electroplating 0.1 mm (with gold flash for adhesion)

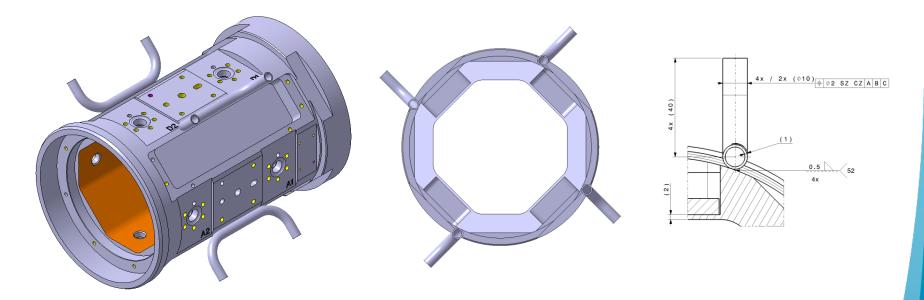
2 tools were designed and built at CERN for electroplating tests (1 setup per coating, 2 setups in total:


- gold flash
- Copper 0.1 mm

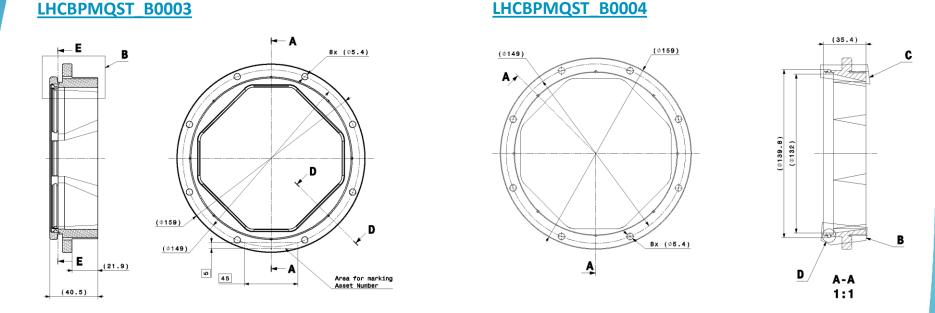


Drawings

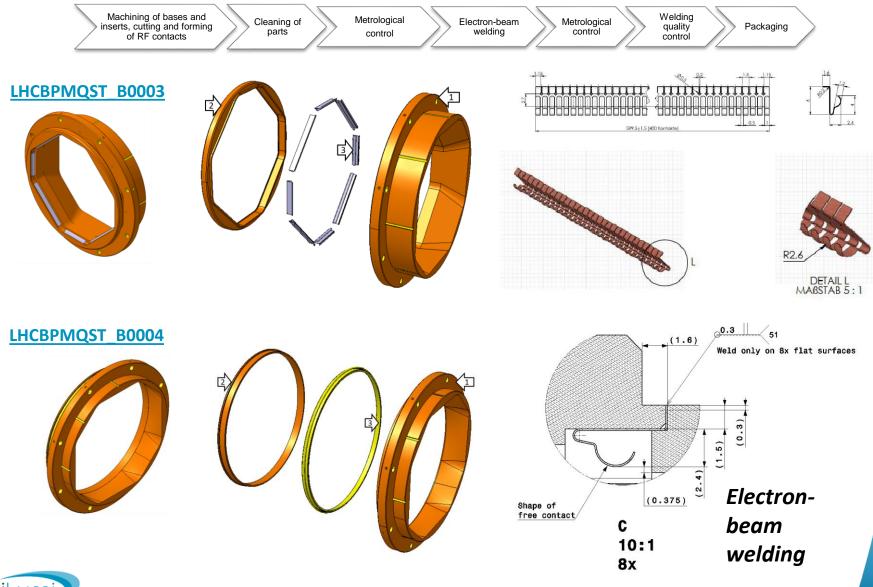
Procedure and work instruction



Body, welding of cooling tubes (LHCBPMQST_B0002)

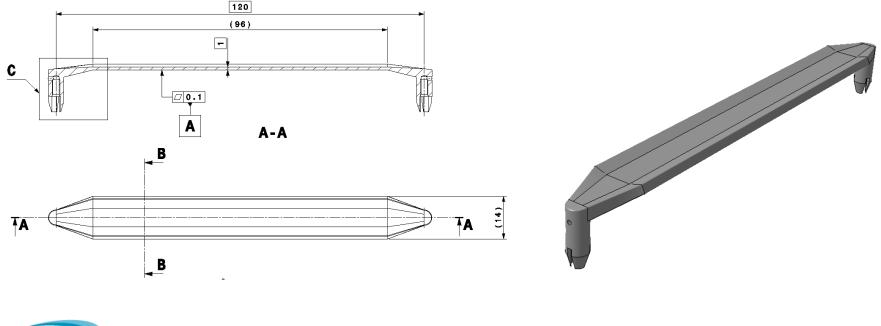


• Laser welding of cooling tubes, 0.5 mm penetration, 55 mm long seam


Transitions (LHCBPMQST_B0003 and LHCBPMQST_B0004)

- CERN material spec. 2000 for Oxygen-Free Electronic copper sheets transition parts
- CuBe 17410 electric contacts
- Electrical contacts are supplied in form of 600 mm strips

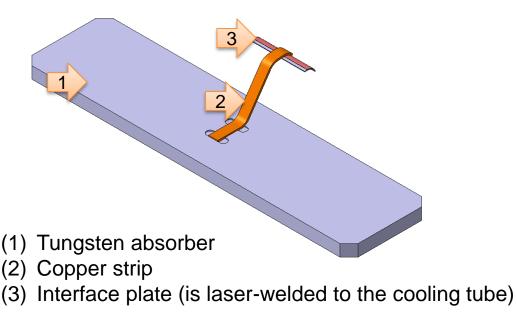
Transitions (LHCBPMQST_B0003 and LHCBPMQST_B0004)

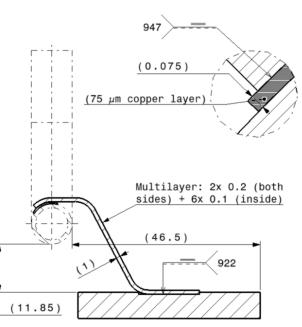

HILUMI

Dmitry Gudkov, BE-BI-ML

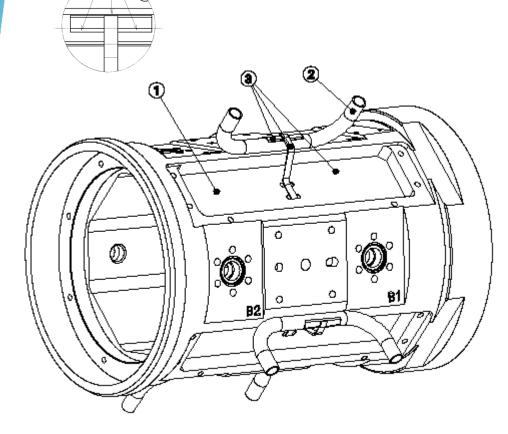
Electrodes (LHCBPMQFT0003)

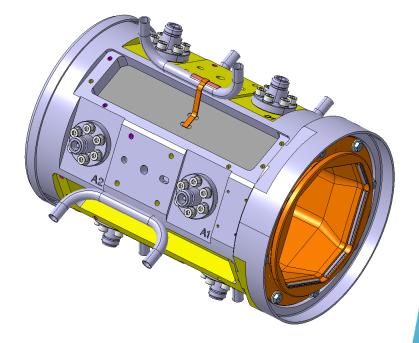
- Iterative design, several prototypes have been manufactured
- Design optimization completed, documentation is being prepared
- Material: CERN material spec. 1000 for 1.4429 round, forged round bars




Tungsten absorber – Copper strip – Interface plate assembly (LHCBPMQST_B0026)

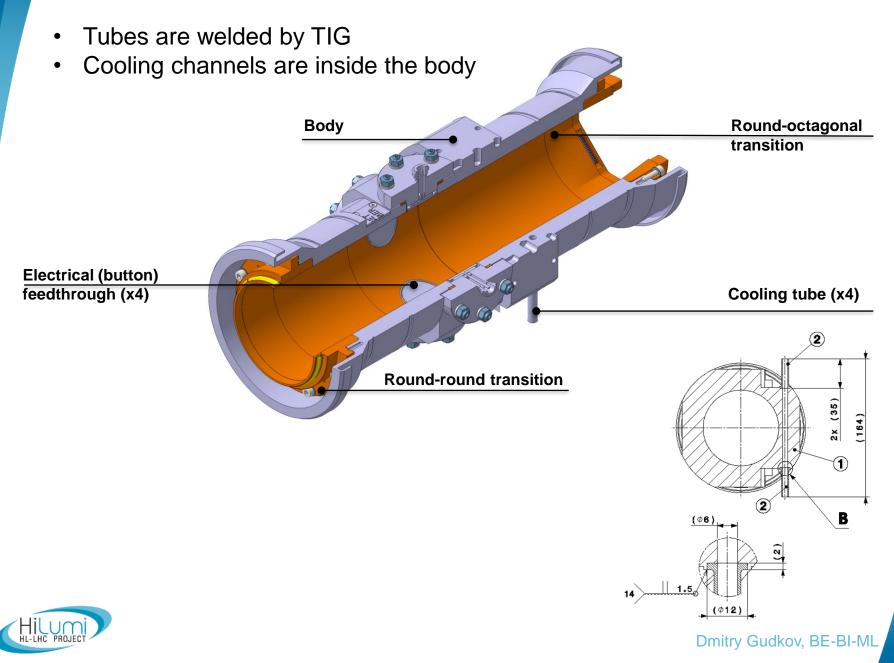
- Tungsten absorbers will be supplied by the TE-VSC
- Copper strip and interface plate are welded (ultrasound welding)
- Then the strip-interface plate subassembly is brazed to tungsten block


CERN Workshop has developed the manufacturing process which will be used to produce 100 pcs. subassemblies



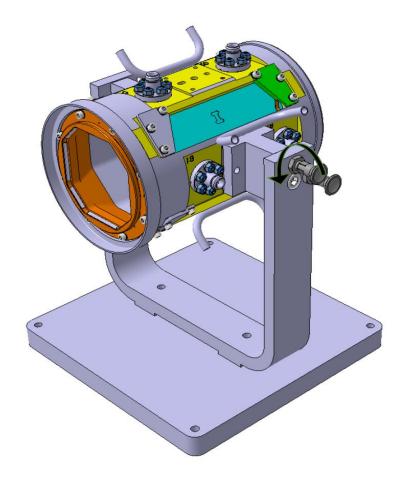
Body, welding tungsten – cooling subassembly (LHCBPMQST_B0002)

- Last welding step
- The tungsten blocks are put into the pockets on the body
- The interface plate is welded (laser) to the cooling tubes



2:1

D2 Body assembly with cooling tubes (LHCBPMQBC_A0010)

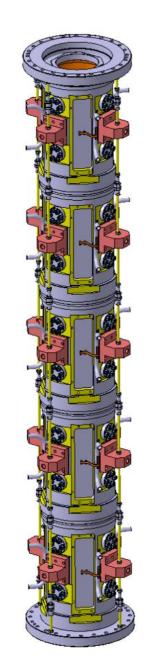

Assembly

Description

- Tooling to provide 4 different orientation of the BPM for access
- Simplified assembly and visual control
- Compatible with all the BPM types
- Tooling parts are interchangeable with the components of other tools
- Bottom magnetic plate can be used for installation of control instrumentation
- Easy to manufacture and not expensive equipment
- Commercial mechanical components

Status

- 3D design 50%
- 2D not started

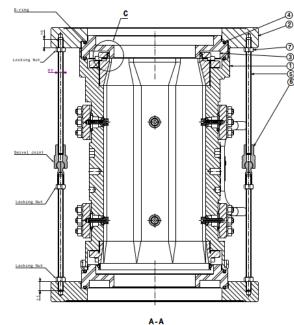

Amorphous Carbon Coating

Description

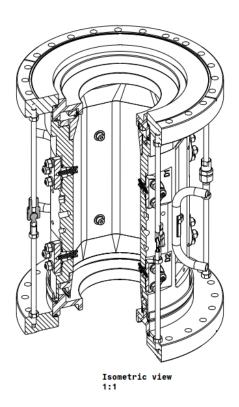
- Tooling for performing the amorphous carbon coating on 4 BPMs in one setup
- Sealed structure (O-rings and CF flanges)
- Threaded rods and swivel joints to create axial force
- 2 designs are required: 1 –type A and type B; 2 – type D2

Status

- 3D design 50%
- Integration with VSC setup to be done
- 2D 25%
- Tooling to be manufactured by Q4 2021

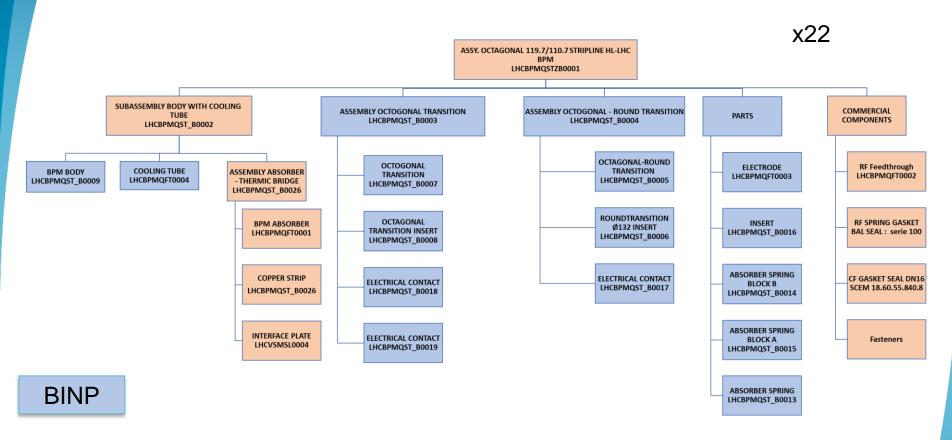

Amorphous Carbon Coating. Test

Description


- Tooling for performing the amorphous carbon coating on 1 BPMs
- Sealed structure (O-rings and CF flanges)
- Threaded rods and swivel joints to create axial force

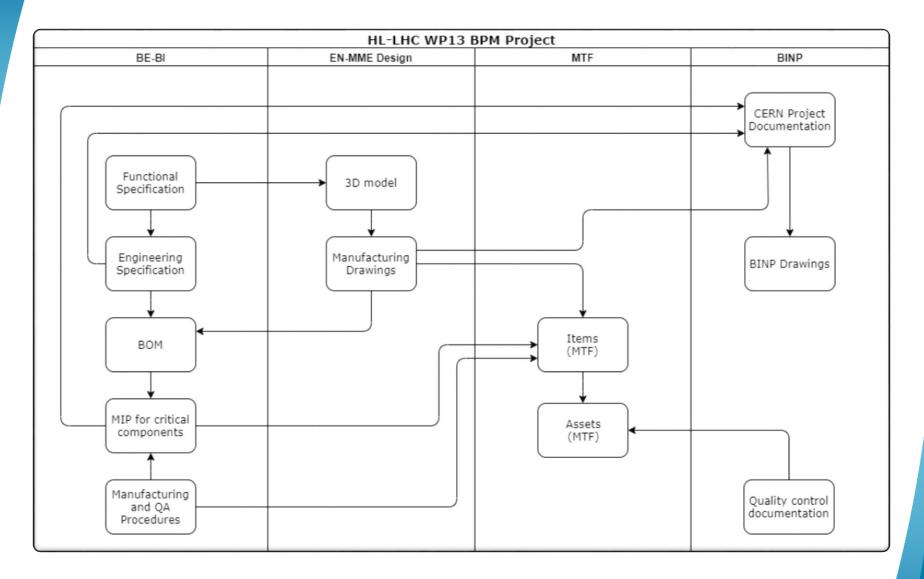
Status

- 3D design 100%
- Integration with VSC setup to be done
- 2D 75%
- Tooling to be manufactured by end of Q1 2021


17

Identification of work for BINP and CERN

- Assembly of the BPMs will be performed at CERN
- Manufacturing of tungsten absorbers is a part of large order placed by TE-VSC
- Assembly of tungsten absorbers with cooling links and interface plates will be done at CERN (MME has a process used for Beam Screen, they can do 120 pcs. for us)
- All the raw materials will be purchased by CERN and shipped to BINP
- All fasteners will be purchased by CERN (no need to have them in BINP as assembly will be done here)
- Commercial components (electrical feedthroughs, CF gaskets, RF springs, electrical contacts) will be purchased by CERN
- All machining work will be done by BINP
- Electron-beam welding of transitions will be done by BINP
- Copper coating of bodies will be done by BINP
- Preasembly of bodies and transitions BINP
- Amorphous carbon coating \rightarrow at CERN


Identification of work for BINP and CERN BPMQSTZB - LHCBPMQSTZB0001

CERN

Quality assurance. Documentation

20

Quality assurance. MIP

EDMS NO. REV. VALIDITY 2365075 0.0 DRAFT

REFERENCE: LHC-EQCOD-FP-XXXXX

ſ		HL-LHC: Quality														
		Manufacturing and Inspection Plan														
		ed by: D. Gudkov 6/03/2020	Project: HL-LHC Work Package: WP13				Supplier: Client: CERN (BE-BI-ML)			Item Eq. Code: LHCBPM Item description: OCTOGONAL BPM BODY			Asset Code (LHC Part Identifier): HCBPMQST_B009 EDMS Report No:			
		d by: N. Surname D/MM/20YY														
+ <u>+</u> •		ed by: N. Surname D/MM/20YY														
Т	No	ACTIVITY / OPÉRATION	APPL STANDAR DS / NORMES APPL	APPLICABLE DOCUMENTS / DOCUMENTS APPLICABLES	REV. DOC.		INSPECTION / CONTRÔLE									
						SUPPLIER / O		CONTRÔLE CLIENT / VÉRIFICATION		3 ^{8D} _PARTY / SURVEILLANCE		INSPECTION REPORT /		REV.	NOTES / COMMENTAIRES	
						Code	Signa	ature/Date	Code	Signature/Date	Code	Signature/Date	RAPPO D'INSPEC		DOC.	
	1	Procurement of raw materials (Cu-OFE)		LHCBPMQST_B0009 BOM EDMS 2314930 (for blanks dimensions)									Material certificates if applicable			
	2	Machining		LHCBPMQST_B0009												
	2.1	Rough machining														
	2.2	Stress relieve heat treatment														
	2.3	Electroerosion of octagonal shape														
	2.4	Intermediate dimensional control		LHCBPMQST_B0009		N							Dimensi control r			
	2.5	Fine machining		EDMS 2338015 LHCBPMQST_B0009		N										
	2.6.	BPM body degreasing														
	2.7	Dimensional control		LHCBPMQST_B0009		H/R			R				Dimensi control r			
	3	Electroplating		LHCBPMQST_B0009												
(

Page 1 of 3

Template EDMS No.: 1528333

Dmitry Gudkov, BE-BI-ML

Quality Assurance. Future actions

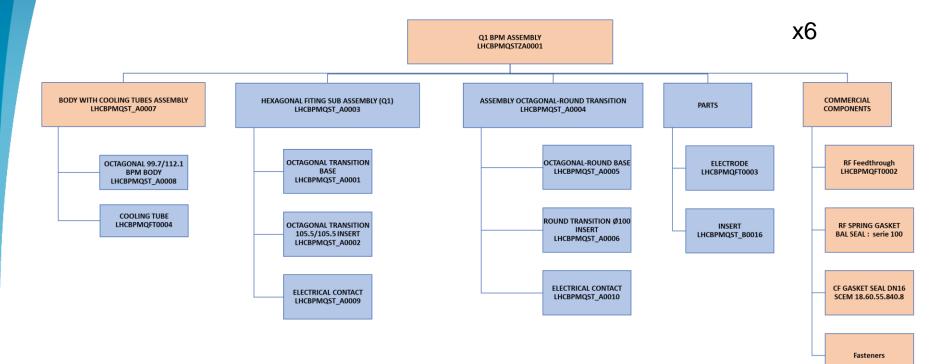
- BINP should have access to MTF (1 person should be managing BINP quality documentation) → someone from BINP workshop?
- This person should be trained on using MTF: HL-LHC P.O. provides such a training
- MIP, Spec. and drawings will be sent to BINP for the manufacturing processes validation. In case BINP wants to change MIP or drawings, these changes should be validated by CERN before manufacturing can start
- BINP can create their own drawings based on CERN drawings, however the quality control will be performed based on CERN drawings

Thank you for your attention!

Special thanks for the input and discussions: N. Chritin, A. Demougeot, N. Kos, G. Favres, E. Rigutto, L. Prever-Loiri, R. Veness, K. Scibor, P. Bestmann, P. Costa Pinto, W. Vollenberg, P. Garritty, C. Garion, F. Santangelo, H. Garcia Gavela, M. Thiebert

Dmitry Gudkov, BE-BI-ML

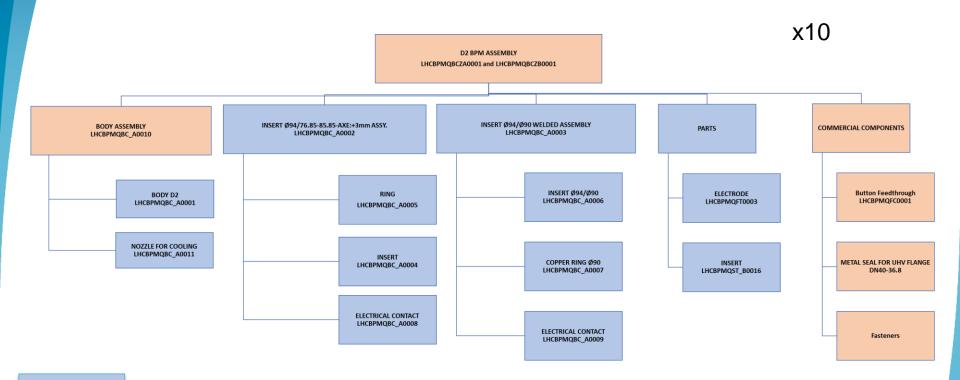
backup


Core competencies needed to produce the BPMs for HL-LHC

- High precision machining (BINP)
- Electro-erosion machining (BINP)
- UHV cleaning (BINP)
- Gold and Copper Electroplating (BINP)
- Electron beam welding (BINP)
- Laser welding (CERN)
- TIG welding (BINP)
- Ultrasound welding (CERN)
- Vacuum brazing (CERN)

25

Identification of work for BINP and CERN BPMQSTZA - LHCBPMQSTZA0001



BINP

CERN

Identification of work for BINP and CERN BPMQBCZA/B LHCBPMQBCZA0001 and LHCBPMQBCZB0001

BINP

CERN

Design and pre-production

- BE-BI is working closely with HL-LHC Project office to identify necessary processes and documentation for CERN-BINP collaboration in alignment with HL-LHC Quality Plan
- BE-BI is working closely with EN-MME, TE-MSC, EN-SMM and TE-VSC to finalize design of interfaces and integration
- BE-BI is working together with CERN Main Workshop to elaborate optimized manufacturing processes to achieve the best quality of BPM components
- By doing so, we are striving to simplify as much as possible the manufacturing of parts and assembly processes
- As the BPM design is completed, we have started communications with BINP on planned manufacturing of the BPM components

28