Machine learning for sampling
in lattice field theory

Phiala Shanahan
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The structure of matter

One application of lattice field theory:

Hadron/nuclear structure and interactions from the
Standard Model of particle physics

v ¥

Emergence Backgrounds

of complex and benchmarks f
structure In for searches for

nature new physics

Many studies limited by available computation



The search for new physics

Precise experiments seek new physics
at the “Intensity Frontier”

© Sensitivity to probe the rarest Standard Model
interactions

© Search for beyond—sStandard-Model effects

Dark matter direct detection v k gl

Neutrino physics

Charged lepton flavour violation, BB-decay,
proton decay, neutron-antineutron oscillations. ..

Exponential*factorial growth in computational cost with A



Strong interactions

Study nuclear structure from the strong interactions

Quantum Chromodynamics (QCD)

Strongest of the four forces In nature

Non-perturbative in low-energy regime Forms other types
of exotic matter
e.g., quark-gluon
plasma

Binds quarks and
cluons Into

protons, neutrons, Binds protons and
pions etc neutrons into nuclel




Lattice QCD

Numerical first-principles approach to
non-perturbative QCD

Discretise QCD onto 4D space-time lattice

QCD equations <= integrals over the values of quark and
gluon fields on each site/link (QCD path integral)

~ 012 variables (for state-of-the-art) - Evaluate by importance
sampling

o Paths near classical action

x‘*/\,_* dominate
X
o Calculate physics on a set

(ensemble) of samples of

the quark and gluon fields
tot| t2 t €



Lattice QCD

Numerical first-principles approach to

non-perturbative QCD

o kucldean space-tme t — 17 \ 1=

© Finrte lattice spacing  a
o Volume L° x T = 647 x 128 =

© Boundary conditions Q? JEVV

Approximate the QCD path integral by Monte Carlo

(0) = 5 [ PADGDIOLA Gule ST e (0) =

with field configurations U" distributed according to e



Lattice QCD

Workflow of a lattice QCD calculation

@ Generate field configurations
via Hybrid Monte Carlo

Leadership-class computing
~ 00K cores or |000GPUs, |0's of TF-years
O(100-1000) configurations, each ~10-100GB

@ Compute propagators Contra;t into |
correlation functions

~few GPUs
O(100k-1M) copies

Large sparse matrix inversion
~few [00s GPUs

| Ox field config in size, many per config

Computational cost grows exponentially with size of nuclear system



Machine learning for LQCD

MACHINE LEARNING IS

E.g., A class of tools for optimising the parameters of complex models to

describe data '

In the context of LQCD, must rigorously account/correct for the effects
of modelling In provably exact/unbiased ways

MACHINE LEARNING IS NOT

A black box or model-independent solution to e.g., inverse problems

W

Applications without formal quantification and propagation of the
effects of modelling, correlations, and systematics, compromise the

rigour of LQCD



Machine learning for LQCD

Existing efforts to apply ML tools to many aspects of
the lattice QCD workflow

Fleld configuration generation by e.g,,
® Multi-scale approaches

Shanahan et al,, Phys.Rev.D 97 (2018) Tanaka and Tomiya, 1712.03893 (2017)

S Accelerated HMC Albergo et al., Phys.Rev.D 100 (2019) Zhou et al,, Phys.Rev.D 100 (2019)

. . Rezende et al,, 2002.02428 (2020) Li et al,, PRX 10 (2020)
°® Direct Samphng methods Kanwar et al,, Phys.Rev.Lett. 125 (2020)  Pawlowski and Urban 1811.03533 (2020)
. Boyda et al,, 2008.05456 (2020) Nagai, Tanaka, Tomiya 2010.1 1900 (2020)

Efficient computations of correlation

functions/observables

Yoon, Bhattacharya, Gupta, Phys. Rev. D 100, 014504 (2019)
Zhang et al, Phys.Rev. D 101,034516 (2020)
Nicoli et al, 2007.07115 (2020)

Sign-problem avoidance via contour

deformation of path integrals

Alexandruet al., Phys.Rev. Lett. 121 (2020),
Detmold et al., 2003.059 14 (2020)

Analysis, order parameters, insights

Tanaka and Tomiya, Journal of the Physical Society
of Japan, 86 (2017)

Wetzel and Scherzer, Phys. Rev. B 96 (2017)
S.BlUcher et al., Phys. Rev. D 101 (2020)

Boyda et al., 2009.109/1 (2020)

*Early developmental stage — many of these
papers use toy theories instead of QCD
*Much more related work in e.g., condensed
matter context



Machine learning for LQCD

Existing efforts to apply ML tools to many aspects of
the lattice QCD workflow
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Zhang et al, Phys.Rev. D 101,034516 (2020)

Nicoli et al, 2007.07115 (2020) E;;'j;e Lo

Sign-problem avoidance via contour  *arly developmental stage — W8

deformation of path integrals papers use toy theories instead of QCD
Alexandruet al, Phys. Rev. Lett. 121 (2020), *Much more related work in e.g., condensed

Detmold et al.,, 2003.059 14 (2020) matter context

2S€E



Lattice QCD

Workflow of a lattice QCD calculation

Q Generate field configurations
via Hybrid Monte Carlo

Leadership-class computing
~ 00K cores or |000GPUs, |0's of TF-years
O(100-1000) configurations, each ~10-106GB

@ Compute propagators Contra;t into |
correlation functions

~few GPUs
O(100k-1M) copies

Large sparse matrix inversion
~few [00s GPUs

| Ox field config in size, many per config

Computational cost grows exponentially with size of nuclear system



Lattice QCD

Generate field configurations ¢(x) with probability
Plo(a)] ~ ¢~

© Gauge field configurations represented by
~1010 links U, (x) encoded as SU(3) matrices
(3x3 complex matrix M with det[M] =1 , M~ = M")
.e., ~ 102 double precision numbers

© Configurations sample probability distribution
corresponding to LQCD action S|¢]
(function that defines the quark and gluon dynamics)

Weighted averages over configurations determine

physical observables of interest

© Calculations use ~ 103 configurations



Generate QCD gauge fields

QCD gauge field configurations sampled via

Hamiltonian dynamics + Markov Chain Monte Carlo

Molecular dynamics Markov Chain Monte Carlo
Classical motion with Propose update using integrated
R;r;ﬁ;g!y molecular dynamics trajectory
H = Z ()] Accept/ reject with probability
o = min(1, eS¢’ @] +S[8(@)))
o Reversible N . 1b
© Volume-preserving ~ INumerical error corrected by
BUT accept/reject

BUT

© Short trajectories for high
acceptance

© Energy non-conservation for
numerical integrators



Generate QCD gauge fields

QCD gauge field configurations sampled via

Hamiltonian dynamics + Markov Chain Monte Carlo

-log(probability density)




Generate QCD gauge fields

QCD gauge field configurations sampled via

Hamiltonian dynamics + Markov Chain Monte Carlo

Hamiltonian/Hybrid Monte Carlo

correlated
A
( \
PNl AR AP NEHE - ==
N\ y
Y
burn-in (discard) sample every nt: ~p(¢)

Burn-in time and correlation length dictated by Markov chain
‘autocorrelation time’: shorter autocorrelation time implies less
computational cost



Generate QCD gauge fields

QCD gauge field configurations sampled via

Hamiltonian dynamics + Markov Chain Monte Carlo

Updates diffusive

Lattice spacing * 0

Number of
updates to change
fixed physical
length scale

- o

“Ciritical slowing-down”
of generation of uncorrelated samples



Generate QCD gauge fields

QCD gauge field configurations sampled via

Hamiltonian dynamics + Markov Chain Monte Carlo

“Ceritical slowing-down”

of generation of uncorrelated samples

Autocorrelation measure

. 1 Tmax
Ty = 5 + lim BO(T)

B L@/ Critical
To — Qo exponent

Correlation of observable (D on
configurations separated by 7 Markov
Chain steps

topological
charge

[Schaefer et al. / ALPHA C%)ration 1009.5228]
10000 .

k a'5

- ==

(0.37 fm/a)
k2 e

(19nt 100
b O
10}
5 fm, 0.5 fm) SN
~
1 - . . ‘
mean flux 0-047 0.07  0.093 0.14
a[fm]

critical [Imit



Machine learning for LQCD

Generative models for QCD gauge field generation

I l- Massachusetts '
Institute of -
Technology g

Murphy Hackett Bovda ‘ ‘kanfwar -

g .,

Papamakarics

Rezende

|||r !

l l - ‘
i le" UNIVERSITAT §

. mum"'ml"uuuu _- HEIDELBERG
_ ZUKUNFT
Hl Mml‘l' IH SEIT 1386

(_T"Iﬁﬁ_

Cranmer Albergo Nt




Scalar lattice field theory

Test case: scalar lattice field theory

One real number ¢(x) € (—o0,00) per lattice site x (2D lattice)

o

Action: kinetic terms and quartic coupling

S(¢) =) (Sj 6(@)0(x, y)é(y) + smH(x)? + Acb(x)“)

>
T

Generate field configurations ¢(x) with probability
Po(o)] ~ e 514



Sampling gauge field configs

Generate field configurations ¢(x) with probability
Plo(e)] ~ 510

1
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likely e TS I. o

(log prob = 22) ‘
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Sampling gauge field configs

Generate field configurations ¢(x) with probability
Plo(e)] ~ 510

Parallels with image generation problem

‘ ) A N |

h ' | - ;I

likely e ®80 o8
(log prob = 22) l

unlikely
(log prob =-6107)|

oo

likely

likely
(log prob =35) &




Sampling gauge field configs

Ensemble of lattice QCD
gauge fields

643 %128 x4 x N2 x 2
~ | 0 numbers

~ 1000 samples

Ensemble of gauge fields has
meaning

Long-distance correlations
are Important

Gauge and translation-
invariant with periodic
boundaries

Physics Is invariant under
specific field transformations

Rotation, translation (4D),
with boundary conditions

Transformed
gauge field configuration

Gauge field
configuration

Encode same physics



Sampling gauge field configs

Ensemble of lattice QCD Physics is invariant under
gauge fields specific field transformations

643 %128 x4 x N2 x 2

= (08 FurAlsere Gauge transformation

i Uu(a) = Q@)U (@) (2 + )
Uy () ) for all Q(x) € SU(3)

~ 1000 samples

Ensemble of gauge fields has

meaning Gauge field Transformed

. . configuration auge field configuration
| ong-distance correlations Ly e R

2 e e S R N
are Important -l | B y &x

P D SR B
RSP, SR SRR

; i P
Gauge and translation- - g
'-;Ui% et el

invariant with periodic R B2k Naas

boundaries Encode same physics



Machine learning QCD

Ensemble of lattice QCD CIFAR benchmark image set
gauge fields for machine learning

643 x128 x 4 x Nc? x 2 © 32 x 32 pixels x 3 cols

=|0? numbers =~3000 numbers

~ 1000 samples - 60000 samples
Ensemble of gauge fields has | |
meaning ~ Each image has meaning
L ong-distance correlations © Local structures are

are Important important

Gauge andltransla}tloln— o Translation-invariance
invariant with periodic within frame

boundaries



Machine learning QCD

Ensemble of lattice QCD CIFAR benchmark image set
i B for machine learning

o 32 x 32 pixels x 3 cols
~3000 numbers

Long-distance correlatlC
are Important

Gauge and translation-
invariant with periodic
boundaries

< Translation-inve
within frame



Sampling gauge field configs

Probability density can be computed for a given sample

up to normalization
P ) p(.)=e 57

Physics distributions have precise symmetries
o Lattice symmetries (translation, rotation, reflection)

© Internal symmetries (gauge symmetries mixing field components)

Data hierarchies are challenging
© 10 to 102 variables per configuration
- O(1000), samples available (fewer than # degrees of freedom per config)

» Hard to use training paradigms that rely on existing samples from
distribution



Generative flow models

Flow-based models learn a change-of-variables that transforms

a known distribution to the desired distribution
[Rezende & Mohamed 1505.05770]

Invertible

o —1
& | aste)= | 2B gy
Tractable “ |
| Jacobian)
(@
L2 A
") A\ DD

Approximates

Easily sampled _ :
desired dist.



Generative flow models

Flow-based models learn a change-of-variables that transforms

a known distribution to the desired distribution
[Rezende & Mohamed 1505.05770]

Invertible

N of 1
& | aste)= | 2B gy
Tractable 4
Jacobian)
_1 —
S @
Z ¢
r(z) ﬁf(¢)
-~ g g S 2’ -
-
_ )

Many simple layers
composed to produce f

Approximates

Easily sampled _ :
desired dist.



Generative flow models

Choose real non-volume preserving flows:

[Dinh et al. 1605.08803] f Application of g

Affine transformation of half of the variables:

© scaling by exp(s)
© translation by t

© sandt arbitrary neural networks depending on
untransformed variables only

Simple inverse and Jacobian

\ f”\\\
LT ba l.\¢b/}
’ Z & N " ! - \\ )./‘/ V\'ﬁx;_,‘; /
L2 .
\\s ,', “‘ ,'l _1
r(z) M\
& gl_] > - -



Simple neural network

Input
single Input
3 samples



Simple neural network

trainable
Weights -
X Wu Zn ‘ ReLU
° - ‘ Zn
AN
dot
product s
| Inpyt Bu nonlinear
single Input function

3 samples trainable Biases



Simple neural network

trainable
Weights o o
X Wi Zu LU Wo Zo ReLU
° = ‘ VA = ‘ Zo
AN
dot
product . L
| I?Pyt t Bu nonlinear Bo Output
single Inpu | _ function two outputs
3 samples trainable Biases 3 samples



Generative flow models

Flow-based models learn a change-of-variables that transforms

a known distribution to the desired distribution
[Rezende & Mohamed 1505.05770]

Invertible

N of 1
& | aste)= | 2B gy
Tractable 4
Jacobian)
_1 —
S @
Z ¢
r(z) ﬁf(¢)
-~ g g S 2’ -
-
_ )

Many simple layers
composed to produce f

Approximates

Easily sampled _ :
desired dist.



Training the model

Target distribution 1s known up to normalisation

p(¢) =e>9)Z

Train to minimise shifted KL divergence: @znang, e, wang 1809.1018e]

shift removes unknown

L(py) := Dgr(psllp) normalisation Z

_ / [[d6;57(6) (08 ps(6) + 5(0))

\

allows self-training: sampling with respect to

model distribution p ¢(¢) to estimate loss




Exactness via Markov chain

Guarantee exactness of generated distribution by forming a
Markov chain: accept/reject with Metropolis-Hastings step

Acceptance
probability

s T p—— (1 p(a" ) P(Qb'))

p(et) B(¢)

proposal independent
of previous sample

Markov
Chain

model
proposals




Exactness via Markov chain

Guarantee exactness of generated distribution by forming a
Markov chain: accept/reject with Metropolis-Hastings step

Acceptance
probability

p(0=1)|p(9) > True dist

(1) 4" = m;
A(¢"",¢') = min (1 (6D )|5(¢')) Model dist

-~

proposal independent
of previous sample

Markov
Chain

model
proposals




Fields via flow models

| »
i
»

_r - i ’ -1 ‘; B ’ 5‘._‘_‘ ’
Cd H B éb

generating samples is
"embarrassingly parallel”

Parameterize flow using Real
NVP coupling layers

Each layer contains

!

Training step

‘ Draw samples from model ‘
|

‘ Compute loss function ‘
|

‘ Gradient descent ‘

A\

arbitrary neural nets
sandt

Desired accuracy?

Markov chain using
samples from model

3

Save trained
model

_J

Summary chart: Tej Kanwar



Application: scalar field theory

First application: scalar lattice field theory
One real number ¢(z) € (—o0, 00) per lattice site x (2D lattice)

Action: kinetic terms and quartic coupling

> |
xZr

S(é) =3 (X 6(@)0(z, y)é(y) + smH(x)* + A¢<x>4>

> lattice sizes: L2 = {62, 82, 104, 122, |42} with parameters tuned for
analysis of critical slowing down

E1l E2 E3 E4 E5
B 6 8 10 12 14
m? —4 —4 —4 Y | —4
A 6.975 6.008 5.550 5.276 5.113
mpyL| 3.96(3)  3.97(5)  4.00(4) 3.96(5)  4.03(6)




Application: scalar field theory

First application: scalar lattice field theory

Prior distribution chosen to be uncorrelated

Gausslan: qb(:l:) N N(O, 1)

Real non-volume-preserving (NVP) couplings

*  8-12 Real NVP coupling layers

* Alternating checkerboard pattern for variable split

*  NNs with 2-6 fully connected layers with [00-1024

hidden units
Train using shifted KL loss with Adam optimizer R L
i
*  Stopping criterion: fixed acceptance rate in Metropolis- L5 -':h

Hastings MCMC A



Application: scalar field theory

First application: scalar lattice field theory

Success: Critical slowing down is eliminated

Cost:
51 O X2
| o G(0)
2 L
71:44(3)
1t 2
L -~
; [/().61(2),,’6 _ =
- ® F==F--
0.5 7,0:31(2)
§ 8 10 12 14

(a) HMC ensembles

Tint ' oFE L1‘94(5)/’®
ﬁ g
5l HX2 R
&
| o G.(0) JL37(5) 4
,E"
® P
ot -
T d
2 =] ,/6
® e 7,146(5)
B &
Ly
e
0.5}
§ 8 10 12 14

(b) Local Metropolis ensembles

Up-front training of the model

Tint | OFE o G.0)
5: o xe A Acc
| i 50% ML models
A Q @.___ﬁ__.g
9! 7,-0.06(5)
'''''''''''''''' L_—E).T)I(T)'
L I T
I 70% ML models
0.51

6 s 10 12 u L
(c) Flow-based MCMC ensembles
Dynamical critical exponents
consistent with zero



Next steps: ML for LQCD

Target application: Lattice QCD for nuclear physics

|. Sca
2. Sca

€ num

€ Num

3. Mer

her of

her of

d

C

imensions = 4D

egrees of freedom — 483 x 96

'hods for gauge theorles

[MIT, NYU, DeepMind, arXiv:2002.02428, ar Xiv:2003.064 | 3]

AURORA | =

Aurora2| Early Science Project



Incorporating symmetries

Gauge field theories

© Feld configurations represented by
links U, (x) encoded as matrices

o e.g, for Quantum Chromodynamics,
SU(3) matrices (3x3 complex matrices M
with det[M] =1, M~1 = M)

© Group-valued fields live not on real line
but on compact manifolds

© Action Is Invariant under group transformations
on gauge fields

l.) Flows on compact, connected manifolds

2. Incorporate symmetries: gauge-equivariant flows



Flows on spheres and tori

Previously: Real non-volume preserving flows

r(z) Py (9)

Need: Flows on compact, connected manifolds
e.g,, crcles, torl, spheres

f(z)
(0) ==




Flows on spheres and tori

Test case: Flows on the circle
e.g, U(I) field theory, robot arm positions

( > flz
. <

Diffeomorphism requires:

f(()) — 07 Ensures.
fem) =2m, | oo
vf(e) >0 — invertible

V£(0)lo=0 = V(0)|o=2r

)
>

Expressive transformations
through:

~ Composition f = fgo---0of

~  Convex combination ’;
(]
0

f0)=>_,pifi(0) >, p

|IAY;

0
1



Flows on spheres and tori

[arXiv:2002.02428] \ormalizing Klows on Tori and Spheres

Danilo Jimenez Rezende "' George Papamakarios “' Sébastien Racaniére " ! Michael S. Albergo >

Gurtej Kanwar® Phiala E. Shanahan® Kyle Cranmer >

Mobius transformation Rotation 1o fix

— fe=0)

fu(0) = Ry, 0 hy(2)

Circular splines

® Rational quadratic function of @ on each of K segments

® Several conditions on coefficients to guarantee
diffeomorphism

Non-compact projection

® Project to the real line and back: careful with numerical
instabilities at endpoints




Flows on spheres and tori

[arXiv:2002.02428] \ormalizing Klows on Tori and Spheres

Danilo Jimenez Rezende "' George Papamakarios “' Sébastien Racaniére " ! Michael S. Albergo >

Gurtej Kanwar® Phiala E. Shanahan® Kyle Cranmer >

Extend straightforwardly
to cartesian products of
circles and intervals
(e.g., tor)

(speJ) 6

Extend recursively to
D-dimensional spheres

r'=g(r) 0" =f0:r) T

Ve eeC

St x[-1,1]




Incorporating symmetries

Incorporating symmetries

© Not essential for correctness of ML-generated ensembles

o BUT: Likely important in training high-dimensional models
especially with high-dimensional symmetries

Flow defined from coupling layers will be invariant under symmetry it

|0 The prior distribution is symmetric

50 Each coupling layer is equivariant under the symmetry

.e., all transformations commute through application of the
coupling layer



Gauge field theory

First gauge theory application: U(I) field theory

Generative flow architecture that Is gauge-equivariant

Gauge transformation

Separate group transformation of Gauge field Transformed
each link matrix U, () configuration  gauge fleld configuration

""" o SR FR

Uu(2) = U (2) = Q) U ()92 (z + o) Encode same physics
for all Q(z) € U(1)



Gauge-equivariant flows

First gauge theory application: U(I) field theory

Generative flow architecture that Is gauge-equivariant

Define invertible, equivariant coupling layer Spacetime

/ dimension

g GNdV N GNdvq_ Lattice volume

Act on a subset of the variables in each layer

s TN A BY __ 1A B
S T __ v g(U 9 U ) — (U 9 U )
7 Links frozen in
Uyu(z) i . coupling layer
wQ—-—-»—QxJF i Links updated by

coupling layer

[Kanwar et al., arXiv:2003.06413]



Gauge-equivariant flows

First gauge theory application: U(I) field theory

Generative flow architecture that Is gauge-equivariant

(', UB)

Define invertible, equivariant coupling layer ¢g(U#, UB)

Link updates via a kernel h : G — G

Gauge-invariant
quantities constructed
T Uosrie] ; e from elements of U® .
INK updatea py /1t 7 Q| T ()
coupling layer  — h(U S |I )S

Loop that starts
and ends at

Coupling layer equivariant under the condition same point
AM(XWXT) = Xh(W)XT, VX, WeQG

[Kanwar et al., arXiv:2003.06413]



Gauge-equivariant flows

First gauge theory application: U(I) field theory

Generative flow architecture that Is gauge-equivariant

vi R — T Gauge-invariant
[J"" — h(UZ S |I7’)SZ quantities constructed

from elements of U~ .

____________

|
|
_________________ ]
Loop that starts | 1

| |
| I
| | |
| | | |
and ends at | | | | |
same point | | | | |
e o o | | I |
| | | | |
| | | | |
————— @ @ i
| o : :

[Kanwar et al., arXiv:2003.064 1 3]



Gauge-equivariant flows

First gauge theory application: U(I) field theory

Generative flow architecture that Is gauge-equivariant

vi R — T Gauge-invariant
[J"" — h(UZ S |I7’)SZ quantities constructed

from elements of U~ .

_____________________________

| | |

| | |

_________________ ‘' |
Loop that starts | 1 | | |
and ends at | | | | |
same point | | — | | |
| I | |
| | | | |
| - —-—__ | | |
" | “~ | |

TTTTTe T T T T T T T T T ‘_ ________ \_\__l ____________ """~ ———— = r————
A A i :
| * X : |
/

U, (x)= U, (x)

[Kanwar et al., arXiv:2003.064 1 3]



Gauge-equivariant flows

First gauge theory application: U(I) field theory

Generative flow architecture that Is gauge-equivariant

vi R — T Gauge-invariant
[J"" — h(UZ S |I7’)SZ quantities constructed

from elements of U~ .

| | |
| | |
_________________ R S T R
Loop that starts | 1 | > |
and ends at | | | | |
same point | — | I (z) | I5(z) |
e o o ‘| I |A V|A vl
| | | frozen | frozen |
: | : :
e o - il — «— L «— I
| x| | . | . |
| * X : |
/
U, (x)= Up()

[Kanwar et al., arXiv:2003.064 1 3]



Gauge-equivariant flows

First gauge theory application: U(I) field theory

Generative flow architecture that Is gauge-equivariant

(U’LS’L|I’L S’LT

Loop that starts
and ends at
same point

|
|
] _:______» _____ i |
| | | |
| — i I(x) N I>(x) |
| v v
| : frozen : frozen i
" "--<_ | | |
@ ——-L\— \_\__: ______ < — : ______ < }_____
: I
I * : |
/
U, (z)= U, (z)

[Kanwar et al., arXiv:2003.064 1 3]



Gauge-equivariant flows

First gauge theory application: U(I) field theory

Generative flow architecture that Is gauge-equivariant

1 1 'L ’LT
>t /\

|
|
Loop that starts =~ — |1 " I—7— T >

I
|
N R A
=== : i
and ends at | R | | | |
same point 1P (%)= P, (7) [ — L Lz) L L(z)
e o o v | \4 v
| | | frozen | frozen i
: | : :
ff____:‘ ___________ @ - ———-L-=- \_\__: ______ <— = «— L
i X \\i . i . |
I I
° ° * ° °
/ ~ ~ / /
P, (£)=Pu (D)Uu(x)UN(x) U, (x)= Uy ()

[Kanwar et al., arXiv:2003.064 1 3]



Gauge-equivariant flows

First gauge theory application: U(I) field theory

Generative flow architecture that Is gauge-equivariant

S L N N N _— = g(7,|1)
P,® Y P, I L UZL — U,
""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""" P, =P,UU]
_ | RN
.
|
|
- |
|
Ol ’ 94
T 93 /
L g5 /
g1 /

[Kanwar et al., arXiv:2003.064 1 3]



Application: SU(N) field theory

Input Configuration

i
y Haar SU(3) Haar SU(4) 3D projection
‘ — ) g s ‘ /, 9 D
| ‘ | ‘g \’/{ \\\///, ‘
@M\ o g W K (
UV( ) P V( ‘W \\\00] S (\. F\'P‘F
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[2008.05456 (2020), PRL 125, 121601 (2020), 2002.02428 (2020)]



Application: U(1) field theory

First gauge theory application: U(I) field theory

One complex number U = e*? per link on a 2D lattice

Action: expressed In terms of plaguettes (products of links
around closed loops) with a single coupling

vie+1) 1
S(U) :—5ZR6P(:U) """"" e T_,O
: 0@ P(e) fone +
P(x) :UO(x)Ul(x_l_O)Ug(CC—'—l)Uf(x) """ 7 Uo?;) ........

Fixed lattice size: L* = 16 with couplings 8 = {1,2,3,4,5,6,7]

Continuum limrt (critical slow-down) as 8 — oo

[Kanwar et al., arXiv:2003.064 1 3]



Application: U(1) field theory

First gauge theory application: U(I) field theory

Prior distribution chosen to be uniform > ©©©
Gauge-equivariant coupling layers @ """"
* 24 coupling layers ) g gil
*  Kernels h: mixtures of non-compact projections, 1*
6 components, parameterised with convolutional 7
NN (1.e., NN output gives params. of NCP) > :'|> 92
* NNs with 2 hidden layers with 8x8 convolutional
filters, kernel size 3
rain using shifted KL loss with Adam ©@ -------

optimizer @©

*  Stopping criterion: loss plateau
[Kanwar et al., arXiv:2003.06413]



Fields via flow models

equivariant

Gauge-

Parameterize flow using
=¥ coupling layers

| »
i)
M

Each layer contains

arbitrary neural nets

!

sandt

Training step

‘ Draw samples from model ‘
|

‘ Compute loss function ‘
|

‘ Gradient descent ‘

A\

Desired accuracy?

3

Save trained
model

N

—— Markov chain using
C”E 5"‘ e % samples from model

_J

generating samples is
"embarrassingly parallel”

Summary chart: Tej Kanwar



Application: U(1) field theory

First gauge theory application: U(I) field theory

Success: Critical slowing down is significantly reduced
Cost:  Up-front training of the model

Sampling of the topological charge EE*

Q == &3, arg(P()) e RS
¢
4 - I
) | — HMC
0 — HB
_9 = Flow
—4 !
| | | | | |
0 20000 40000 60000 80000 100000
Markov chain step 2008.05456 (2020),
PRL 125, 121601 (2020),
2D, L=16, B=6 ——

2002.02428 (2020)]



Application: U(1) field theory

First gauge theory application: U(I) field theory

Success: Critical slowing down s significantly reduced
Cost:  Up-front training of the model

Integrated autocorrelation time
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Application: U(1) field theory

First gauge theory application: U(I) field theory

Su ﬁﬁﬁﬁﬁﬁ r\lﬁ:"':f"'\l f‘lf\ A 1V r<x AA A I\ 1~ N1 r<e;m 'p/"'\lt'\"'l 4 MAAI I/‘I\Id

C SUCCESS'

Proof-of-principle of efficient,
exact, ML algorithm for U(N) and
SU(N) LQFT

Significant work required to add
fermions, scale to state-of-the-art

| . . | . - [2008.05456 (2020),
1 9 3 4 5 6

7
_ PRL 125, 121601 (2020),
2D’ L=16 b 2002.02428 (2020)]



Interdisciplinary applications
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Boltzmann generators: Sampling > s bt
equilibrium states of many-body "
systems with deep learning M

Frank Noé*t, Simon Olsson*, Jonas Kéhler*, Hao Wu I |
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H. Application: Multi-Link Robot Arm

As a concrete application of flows on tori, we consider
the problem of approximating the posterior density over
joint angles 6. ¢ of a 6-link 2D robot arm, given (soft)
constraints on the position of the tip of the arm. The possible
configurations of this arm are points in TS. The position 7,

ofajointk=1,..., 6 of the robot arm is given by
e =7E_1+ | lx cos ZGJ- , g sin Zﬁj ,
J<k i<k
wihava v — (0N Sa tha macitinm vwihara tha ases 0 afBovaAd

S —




Outlook

ML-accelerated algorithms have huge potential to enable
first-principles nuclear physics studies

Flow-based generation of QCD gauge fields at scale would

* Enable fast, embarrassingly parallel sampling
— high-statistics calculations

Emergence
* Allow parameter-space exploration (re-tune trained models) of complex
* Reduce storage challenges (store only model, not samples) structure In

nature

Implementations of flow models at scale (e.g, 4D, 643x128)
conceptually straightforward, but work needed

Backgrounds and
benchmarks for
searches for new
physics

% Training paradigms
% Model parallelism

¥ Exascale-ready implementations

¥
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Joint software effort

Our codes exploit and extend We run on
existing ML software frameworks e CPUs

e Tensorflow 1 e GPUs

e Pytorch TensorFlow e [PUs

o JAX V- :

-\ \ ‘
((A('(‘:"“g PYTSRCH Targeting exascale
hardware for

Active research projects into nuclear physics
training protocols: projects
e Pruning
® Hyperparameter searches AURORA | &=
e |nitialisation frameworks
®




