LLPs at FCC-ee

 $\begin{array}{c} Home \\ \text{Oct 28}^{\text{th}} 2020 \end{array}$

Matthew McCullough CERN

Dark Sectors

Evidence for dark matter is now overwhelming

- Rotation curves
- CMB
- Large scale structure
- Velocity dispersions
- Gravitational lensing (Bullet Cluster)

Yet we have no clue what it is at the particle level!

Only 18% of all matter in Universe is visible.

 $egin{array}{cccc} e & u & d & z & h \ \mu & c & s & & g \ au & t & b & \gamma & W \end{array}$

Within that 18% we observe extraordinary complexity.

Similarly, it may be the light mediators, or other states, that open the window to the dark sector.

Windows

The standard model provides two examples of neutral bosons which can comfortably be light and have arbitrarily weak interactions:

> Standard Model

 π

Z

Dark Sector

ALPs

I will here focus on this case:

Standard Model

Dark Sector

Pseudo-Goldstone Bosons can be naturally light. Typically called "Axion-Like Particles (ALPs)".

$$\mathcal{L}_{\text{eff}} \ni e^2 C_{\gamma\gamma} \frac{a}{\Lambda} F_{\mu\nu} \tilde{F}^{\mu\nu} + \frac{2e^2}{s_w c_w} C_{\gamma Z} \frac{a}{\Lambda} F_{\mu\nu} \tilde{Z}^{\mu\nu} + \frac{e^2}{s_w^2 c_w^2} C_{ZZ} \frac{a}{\Lambda} Z_{\mu\nu} \tilde{Z}^{\mu\nu}$$

Many possible interactions, but focus on these.

ALPs

We will here focus on this case:

Standard Model a

Dark

Sector

Pseudo-Goldstone Bosons can be naturally light. Typically called "Axion-Like Particles (ALPs)".

$$\mathcal{L}_{\text{eff}}^{D\geq 6} = \frac{C_{ah}}{\Lambda^2} \left(\partial_{\mu} a\right) \left(\partial^{\mu} a\right) \phi^{\dagger} \phi + \frac{C_{Zh}}{\Lambda^3} \left(\partial^{\mu} a\right) \left(\phi^{\dagger} i D_{\mu} \phi + \text{h.c.}\right) \phi^{\dagger} \phi + \dots ,$$

Can also have interactions with the Higgs.

ALPs: FCC-ee/CEPC

Possible to probe multi-TeV couplings across a range of parameter space:

Revealing light remnants of high scale physics!

What about an ALP and a dark photon?

 π

Z

Z'

a

Standard Model

Dark Sector

 $\mathcal{L}_{eff} = \frac{C_{a\,\gamma\gamma}}{\Lambda} a\,F^{\mu\nu}\tilde{F}_{\mu\nu} + 2\frac{C_{a\gamma\bar{\gamma}}}{\Lambda} a\,F^{\mu\nu}\tilde{\bar{F}}_{\mu\nu}$

With this addition the signatures change somewhat:

Leading to the additional handle of missing energy!

Future lepton colliders also have extreme sensitivity to high scale physics in this case:

Comment: On Energy It is tempting to associate the weakly coupled frontier with the low mass range. Why?

Case study: The Higgs boson is the most mysterious particle in nature. If it has rare decays then the only shot at discovering them is through Higgs boson decays.

(

The Higgs is totally different from other particles and could be our new window to the dark sector:

> Standard Model

Standard Model

1612.09284

The Higgs is totally different from other particles be our new window to the dark sector: anc Since the Higgs decay respects a parity symmetry for the ALP, these ALPs could be easily long-lived. Would be interesting to make all these channels long-lived and see what results are! 10^{-1} 3R(h→Exotics) 10⁻² 10⁻³ 10^{-4} 10^{-1} JJ+ME, TT+ME, (bb)(bb) (cc)(cc) (bb)(TT) ME, (bb)+ME, (jj)+ME, (TT)+ME, bb+ME, (YY)(YY) (jj)(jj) (17)(17) (jj)(_{YV})

1812.05588 - Higgs to LLP

Figure 1: Projected 95% $h \to XX$ branching ratio limits as a function of proper decay length for a variety of X masses. Blue lines are for CEPC and orange lines are for FCC-ee, and where only one is visible they overlap. The larger dashes are the 'long lifetime' analysis and the smaller dashes are the 'large mass' analysis.

1911.08721 - Light Scalars

UV Motivations

Neutral Naturalness

Could there be totally hidden states which tame sensitivity to physics at the cutoff?

----h + h--

Much attention now to alternative ideas:

Neutral Naturalness

Naturalness not hidden, just look in new places...

1812.05588 - Neutral Naturalness

1911.08721 - Folded SUSY

SUSY (ish)

1904.10661 - Neutralinos

Neutrinos

Simon Knapen - Neutrinos

There are clearly lots of interesting studies to do. Personal perspective...

Would prioritize decays of H or Z to pair of LLPs, which subsequently decay with range of final states.

This would cover a great range of UV scenarios.