FCC Status and Plans

Michael Benedikt, CERN

on behalf of the FCC collaboration and FCCIS DS team

LHC

FCC

Work supported by the **European Commission** under the **HORIZON 2020** projects EuroCirCol, grant agreement 654305; EASITrain, grant agreement no. 764879; ARIES, grant agreement 730871, FCCIS, grant agreement 951754, and E-JADE, contract no. 645479

ARIES

SPS

Horizon 2020 European Union funding for Research & Innovation

photo: J. Wenninger

The FCC integrated program h ee he inspired by successful LEP – LHC programs at CERN

LHC

Prealps

Aravis

COSYNOM CERN 20

- **Comprehensive cost-effective program maximizing physics opportunities**
- Stage 1: FCC-ee (Z, W, H, tt) as Higgs factory, electroweak & and top factory at highest luminosities
- Stage 2: FCC-hh (~100 TeV) as natural continuation at energy frontier, with ion and eh options
- Complementary physics
- Common civil engineering and technical infrastructures
- Building on and reusing CERN's existing infrastructure
- FCC integrated project allows seamless continuation of HEP after HL-LHC

Future Circular Collider Study Michael Benedikt ECFA, 19 November 2020

FCC integrated project technical schedule

34 35 36 37 38 39 40 41 42 43 ~25 years operation 15 years operation

Future Circular Collider Study Michael Benedikt ECFA, 19 November 2020

h ee he

From ESPPU 2020 document

Core sentence and main request "order of the further FCC study":

"Europe, together with its international partners, should investigate the technical and financial feasibility of a future hadron collider at CERN with a centre-of-mass energy of at least 100 TeV and with an electron-positron Higgs and electroweak factory as a possible first stage. Such a feasibility study of the colliders and related infrastructure should be established as a global endeavour and be completed on the timescale of the next Strategy update."

FCC feasibility study: main challenges

Financial feasibility

Cost of tunnel: ~5.5 BCHF; FCC-ee: ~5-6 BCHF; FCC-hh: ~17 BCHF (if after FCC-ee)
 → cannot be funded only from CERN's (constant) budget + "one-off" contributions from non-Member States → need new mechanisms (global project funding model; EC? private?)
 First priority of feasibility study: find ~ 5 BCHF for the tunnel from outside CERN's budget

Technical and administrative feasibility of tunnel

- □ highly-populated area; two countries with different legislative frameworks
- □ land expropriation and reclassification
- □ high-risk zones
- environmental aspects

First priority of feasibility study: no show-stopper for ~100 km tunnel in Geneva region

Technologies of machine and experiments

- □ huge challenges, but under control of our scientific community
- □ pressing environmental aspects: energy, cooling, gases, etc.

First priority of feasibility study: magnets; minimise environmental impact; energy efficiency and recovery

Gathering scientific, political, societal and other support

- → requires "political work" and communication campaign for "consensus building" with governments and other authorities, scientists from other fields, industry, general public, etc.
 - → can FCC be a facility also for other disciplines (nuclear science, photon science, etc.)?
 - \rightarrow creative and proactive ideas for technology transfer from FCC to society

Fabiola Gianotti: "CERN vision and goals until next strategy update" FCCIS Kick-Off, 9 Nov. 2020

Feasibility Study of FCC integrated project

Feasibility study to be delivered end 2025 as input for ESPP Update expected for 2026/2027, to enable a project decision:

- Feasibility study of the 100 km tunnel (infrastructure aspects, administrative aspects, local authorities, environment, energy, etc.)
- High-risk areas site investigations included, to confirm principle feasibility
- Host-state related processes, to allow start of construction early 2030ies.
- CDR+ for colliders and injectors, including key technology proofs.
- **HFM program intermediate milestones,** in line with long-term R&D plan.
- Physics and experiments CDR + for FCC integrated project.
- Financing concept & organization model for project and operation phases.
- For all these activities the sequential nature of implementation of the colliders and the overall timeline needs to be taken into account!

FCC roadmap towards stage 1

nh ee he

CE preparatory activities 2020 - 2030

- Technical schedule of main processes leading to start of construction begin 2030ies
- For proof of principle feasibility: High risk area site investigations, 2022 2024
- Followed by update of civil engineering conceptual design and CE cost estimate 2025

FCC key deliverables: prototypes by 2025

FCC-ee complete arc half-cell mock up

including girder, vacuum system with antechamber + pumps, dipole, quadrupole + sext. magnets, BPMs, cooling + alignment systems, technical infrastructure interfaces.

key beam diagnostics elements

bunch-by-bunch turn-by-turn longitudinal charge
density profiles based on electro-optical spectral
decoding (beam tests at KIT/KARA);

ultra-low emittance measurement (X-ray interferometer tests at SuperKEKB, ALBA); beam-loss monitors (IJCLab/KEK?); beamstrahlung monitor (KEK); polarimeter ; luminometer

FCC key deliverables: prototypes by 2025

400 MHz SRF cryomodule, + prototype multi-cell cavities for FCC ZH operation High-efficiency RF power sources

positron capture linac

large aperture S-band linac

high-yield positron source

target with DC SC solenoid or flux DC Solenoid concentrator SC Target S band Linac

beam test of e⁺ source & capture linac at SwissFEL – yield measurement

Strong support from Switzerland via CHART II program 2019 – 2024 for FCC-ee injector, HFM, beam optics developments, geology and geodesy activities.

Future Circular Collider Study Michael Benedikt ECFA, 19 November 2020

• Freq : 2.856 GHz

- 90 cells per structure
- Length: 3.254 m
- Distance between two TWs: 45 cm
- Gradient: 20 MV/m
- Aperture: 30 mm

FCC hh ee he

FCC-ee Machine Detector Interface

L. Pellegrino

Smooth transition

to a half of "ellipse'

Smooth transition from

the "ellipse" to a round pipe of 20 mm

IP central

round pipe

M. Boscolo

smaller IR chamber, no longer trapped HOM

start of 3D mechanical design & integration

Q1 prototype, measured multipoles very small, confirming design approach

M. Koratzinos

Carlo Petrone Multipoles calculated up to B15, A15, but are all zero

SuperKEKB – pushing luminosity and β^*

<u>Design</u>: double ring e⁺e⁻ collider as *B*-factory at 7(e⁻) & 4(e⁺) GeV; design luminosity ~8 x 10³⁵ cm⁻²s⁻¹; $\beta_y^* \sim 0.3$ mm; nano-beam – large crossing angle collision scheme (crab waist w/o sextupoles); beam lifetime ~5 minutes; top-up injection; e⁺ rate up to ~ 2.5 10¹² /s ; under commissioning

Future Circular Collider Study Michael Benedikt ECFA, 19 November 2020

Potential EIC – FCC collaboration

NSLS-II, EIC & FCC-ee beam parameters

	NSLS-II	EIC	FCC-ee-Z
Beam energy [GeV]	3	10 (20)	45.6
Bunch population [10 ¹¹]	0.08	1.7	1.7
Bunch spacing [ns]	2	10	15, 17.5 or 20
Rms bunch length [mm]	4.5 - 9	2	3.5 (SR)
Beam current [A]	0.5	2.5 (0.27)	1.39
RF frequency [MHz]	500	591	400

Similarity of several parameters strongly suggests collaboration to exploit synergies in areas such as beam instrumentation, SRF, vacuum system with SR handling, etc.

→ Two dedicated sessions at FCC-IS kick-off meeting towards EIC-FCC collaboration.

H2020 DS FCC Innovation Study 2020-24

Tonic

BINP

			Торіс	INFRADEV-01-2019-2020
ULIV, United Kingdom			Grant Agreement	FCCIS 951754
	Springer, The Netherlands		Duration	48 months
	•DESY, Germany		From-to	2 Nov 2020 – 1 Nov 2024
Bonoficiarios	IFJPAN, Poland		Project cost	7 435 865 €
Denenciaries	KIT, Germany		EU contribution	2 999 850 €
CEA, France			Beneficiaries	16
	CERNTMFS, Austria		Partners	6
Cerema, CETU, Fran USC, Spain	ce CSIL, Italy LD, Switzerland INFN, Italy CNRS, France	DOE United	Partner States of America United Kingdom D.R.R.1 France	S BINF Russian Federation Writelatex DBA Overleaf United Kingdom Etat de Genève Switzerland

Objectives of FCCIS (Description of Action)

- <u>O1:</u> **Design a circular luminosity frontier particle collider** with a research programme to remain at the forefront of research
- <u>O2</u>: **Demonstrate the technical and organizational feasibility** of a 100 km long, circular particle collider
- <u>O3:</u> Develop an innovation plan for a longterm sustainable research infrastructure that is seamlessly integrated in the European research landscape
- <u>O4:</u> Engage stakeholders from different sectors of the society
- <u>O5:</u> Demonstrate the role and impact of the research infrastructure in the innovation chain, focusing on responsible resource use and managing environmental impacts

FCC November Week

(organisers M. Benedikt, J. Gutleber, F. Zimmermann)

FCC-ee Collider Design (WP2) Integrate Europe (WP3) Impact & Sustainability (WP4) Leverage & Engage (WP5)

FUTURE

CIRCULAR

COLLIDER

• 4th FCC Physics & Experiments Workshop

(organisers A. Blondel, M. Mangano, M. Dam, P. Janot)

Physics Prospects, Detector development, Collaboration Forming, Physics Benchmark Measurements, New Ideas and Challenges, Detector Technologies, Experimental Environment, and Machine-Detector Interface.

http://cern.ch/FCCNoW2020

Future Circular Collider Study Michael Benedikt ECFA, 19 November 2020 • Europe • Oceania • Asia • South America • North America • Africa

FCC November Week Programme at a Glance

Collider placement optimisation

- Overall layout and placement optimisation process across both host states
- Following the "avoid-reduce-compensate" directive of European and French regulatory frameworks
- Process integrates diverse requirements and constraints:
 - performance permitting world-leading scientific research
 - technical feasibility of civil engineering and subsurface constraints
 - territorial constraints on surface and subsurface
 - nature, accessibility, technical infrastructure, and resource needs & constraints
 - economic factors including development of benefits for, and synergies, with the regional developments
- Collaborative effort of technical experts at CERN, consultancy companies and government notified bodies

Status of Global FCC Collaboration

Increasing international collaboration as a prerequisite for success:

links with science, research & development and high-tech industry will be essential to further advance and prepare the implementation of FCC

30

Countries

- 1st phase of FCC design study completed → baseline machine designs, performance matching physics requirements, in 4 CDRs
- Integrated FCC programme submitted to European Strategy Update 2019/20
 → Request for feasibility study as basis for project decision by 2026/27
- Next steps: concrete local/regional implementation scenario in collaboration with host state authorities, accompanied by machine optimization, physics studies and technology R&D, performed via global collaboration and supported by EC H2020 Design Study FCCIS, to prove feasibility by 2025/26
- Long term goal: world-leading HEP infrastructure for 21st century to push the particle-physics precision and energy frontiers far beyond present limits.

Spare Slides on FCC CDR Status

Future Circular Collider Study Michael Benedikt ECFA, 19 November 2020

FCC-ee collider parameters (stage 1)

parameter	Z	WW	H (ZH)	ttbar
beam energy [GeV]	45	80	120	182.5
beam current [mA]	1390	147	29	5.4
no. bunches/beam	16640	2000	393	48
bunch intensity [10 ¹¹]	1.7	1.5	1.5	2.3
SR energy loss / turn [GeV]	0.036	0.34	1.72	9.21
total RF voltage [GV]	0.1	0.44	2.0	10.9
long. damping time [turns]	1281	235	70	20
horizontal beta* [m]	0.15	0.2	0.3	1
vertical beta* [mm]	0.8	1	1	1.6
horiz. geometric emittance [nm]	0.27	0.28	0.63	1.46
vert. geom. emittance [pm]	1.0	1.7	1.3	2.9
bunch length with SR / BS [mm]	3.5 / 12.1	3.0 / 6.0	3.3 / 5.3	2.0 / 2.5
Iuminosity per IP [10 ³⁴ cm ⁻² s ⁻¹]	230	28	8.5	1.55
beam lifetime rad Bhabha / BS [min]	68 / >200	49 / >1000	38 / 18	40 / 18

FCC-ee: efficient Higgs/electroweak factory

Luminosity *L* per supplied electrical wall-plug power P_{WP} is shown as a function of centre-of-mass energy for several proposed future lepton colliders.

Future Circular Collider Study Michael Benedikt ECFA, 19 November 2020

FCC-hh (pp) collider parameters (stage 2)

parameter	FCC-hh		HL-LHC	LHC
collision energy cms [TeV]	100		14	14
dipole field [T]	16		8.33	8.33
circumference [km]	97.75		26.7	26.7
beam current [A]	0.5		1.1	0.58
bunch intensity [10 ¹¹]	1	1	2.2	1.15
bunch spacing [ns]	25	25	25	25
synchr. rad. power / ring [kW]	2400		7.3	3.6
SR power / length [W/m/ap.]	28.4		0.33	0.17
long. emit. damping time [h]	0.54		12.9	12.9
beta* [m]	1.1	0.3	0.15 (min.)	0.55
normalized emittance [µm]	2.2		2.5	3.75
peak luminosity [10 ³⁴ cm ⁻² s ⁻¹]	5	30	5 (lev.)	1
events/bunch crossing	170	1000	132	27
stored energy/beam [GJ]	8.4		0.7	0.36

hh ee he

FCC-hh: highest collision energies

from LHC technology 8.3 T NbTi dipole

via HL-LHC technology . 12 T Nb₃Sn quadrupole

- order of magnitude performance increase in both energy & luminosity
- 100 TeV cm collision energy (vs 14 TeV for LHC)
- 20 ab⁻¹ per experiment collected over
 25 years of operation (vs 3 ab⁻¹ for LHC)
- similar performance increase as from Tevatron to LHC

key technology: high-field magnets

FNAL dipole demonstrator 14.5 T Nb₃Sn

FCC implementation - footprint baseline

- Present baseline position was established considering:
- lowest risk for construction, fastest and cheapest construction
- Molasse rock preferred for tunnelling, avoid limestone with karstic structures
- 90 100 km circumference
- 12 surface sites with few ha area each

Future Circular Collider Study Michael Benedikt ECFA, 19 November 2020

h ee he

Civil Engineering construction schedule

- Total construction duration 7 years
- First sectors ready after 4.5 years

Future Circular Collider Study Michael Benedikt ECFA, 19 November 2020

hh ee he

FCC CDR and Study Documentation

- **FCC-Conceptual Design Reports:**
 - Vol 1 Physics, Vol 2 FCC-ee, Vol 3 FCC-hh, Vol 4 HE-LHC
 - CDRs published in European Physical Journal C (Vol 1) and ST (Vol 2 – 4)

EPJC 79, 6 (2019) 474, EPJST 228, 2 (2019) 261-623,

EPJ ST 228, 4 (2019) 755-1107 , EPJ ST 228, 5 (2019) 1109-1382

- Summary documents provided to EPPSU SG
 - FCC-integral, FCC-ee, FCC-hh, HE-LHC
 - Accessible on http://fcc-cdr.web.cern.ch/