Gamma Factory

Novel opportunities for Atomic, Nuclear, and Applied Physics

ECFA Plenary Meeting, November 2020

Dmitry Budker
Helmholtz Institute Mainz, JGU Excellence Cluster PRISMA+, and UC Berkeley
Outline of the talk

- Opportunities with primary, secondary, and tertiary beams
- Atomic physics at the GF @ LHC and GF @ SPS
- Nuclear photophysics with fixed targets
- Applied physics examples
- Conclusions
Atomic Physics Studies at the Gamma Factory at CERN

Dmitry Budker,* José R. Crespo López-Urrutia, Andrei Derevianko, Victor V. Flambaum, Mieczysław Witold Krasny, Alexey Petrenko, Szymon Pustelny, Andrey Surzhykov, Vladimir A. Yerokhin, and Max Zolotorev
duality

Light Source ↔ Giant Ion Trap
Spectroscopy of PSI

PSI = HCl = Highly Charged Ions

Hydrogen-like Ions

Transition energy $\Delta E_{nn'} \propto (Z\alpha)^2$

Fine-structure splitting $\propto (Z\alpha)^4$

Hyperfine-structure splitting $\propto \alpha(Z\alpha)^3 m_e/m_p$

Lamb shift $\propto \alpha(Z\alpha)^4$

Strong E-fields!

$\text{Pb}^{81^+} : \ 10^{16} \ \text{V/cm}$

Schwinger critical field

$$E_s = m^2 c^3 / (e\hbar) \approx 1.3 \times 10^{16} \ \text{V/cm}$$
: direct excitation of heavy PSI with primary photons
Li-like ions

<table>
<thead>
<tr>
<th>Ion</th>
<th>Transition energy</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pb(^{79+})</td>
<td>(230.823 \pm 0.047) ((47)(4))</td>
<td>theory, [5]</td>
</tr>
<tr>
<td></td>
<td>(230.76(4))</td>
<td>theory, [6]</td>
</tr>
<tr>
<td>Bi(^{80+})</td>
<td>(235.800(53)(9))</td>
<td>theory, [5]</td>
</tr>
<tr>
<td></td>
<td>(235.72(5))</td>
<td>theory, [6]</td>
</tr>
<tr>
<td>U(^{89+})</td>
<td>(280.645(15))</td>
<td>experiment, [7]</td>
</tr>
<tr>
<td></td>
<td>(280.775(97)(28))</td>
<td>theory, [5]</td>
</tr>
</tbody>
</table>

TABLE III. Energies (eV) of the \(1s^2 2s^2 S_{1/2} \rightarrow 1s^2 2p^2 P_{1/2}\) transition in heavy lithium-like ions.

PoP experiment

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>crossing angle</td>
<td>2.6°</td>
</tr>
<tr>
<td>Ion magnetic rigidity</td>
<td>787 Tm</td>
</tr>
<tr>
<td>Ion (\gamma) factor</td>
<td>96.3</td>
</tr>
<tr>
<td>Ion beam horizontal RMS size at IP</td>
<td>1.3 mm</td>
</tr>
<tr>
<td>Ion beam vertical RMS size at IP</td>
<td>0.8 mm</td>
</tr>
<tr>
<td>Ion revolution frequency</td>
<td>43.4 kHz</td>
</tr>
<tr>
<td>Laser photon energy</td>
<td>1.2 eV</td>
</tr>
<tr>
<td>Laser frequency</td>
<td>40 MHz</td>
</tr>
<tr>
<td>Laser pulse energy</td>
<td>5 mJ</td>
</tr>
<tr>
<td>Ion (2s_{1/2} \rightarrow 2p_{1/2}) transition energy</td>
<td>230.8 eV</td>
</tr>
<tr>
<td>Maximum energy of back scattered photon</td>
<td>44.5 keV</td>
</tr>
</tbody>
</table>
Projected 10^{-4} uncertainty in the PoP experiment: better than current theory state-of-the-art

Atomic Physics already in PoP!
Fundamental symmetry tests at the GF
Parity Nonconservation in Relativistic Hydrogenic Ions

M. Zolotorev and D. Budker

Why?
- New physics (e.g. Z’ bosons)
- Neutron skins
- Nuclear anapoles

\[\rho \]

\[\rho_p \]

\[\rho_n \]

\[\Delta R_{np} \]

\[R_p \]

\[R_n \]

pdg.lbl.gov/2020/reviews/rpp2020-rev-standard-model.pdf
Parity Nonconservation in Relativistic Hydrogenic Ions

M. Zolotorev and D. Budker

Fig. 1. The 1S→2S transition in a hydrogenic system.

level-mixing

\[|2S\rangle \Rightarrow |2S\rangle + \eta |2P\rangle, \quad \eta = \frac{\langle 2P | \hat{H}_{\text{w}} | 2S \rangle}{E_{2S} - E_{2P}} \]

circular dichroism
Table 2. Parameters of relativistic ion storage rings.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>RHIC</th>
<th>SPS</th>
<th>LHC</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\gamma_{\text{max}}) for protons (^a)</td>
<td>250</td>
<td>450</td>
<td>7000</td>
</tr>
<tr>
<td>Number of ions/ring (^b)</td>
<td>(\sim 5 \cdot 10^{11})</td>
<td>(\sim 2 \cdot 10^{11})</td>
<td>(\sim 5 \cdot 10^{10})</td>
</tr>
<tr>
<td>Number of bunches/ring</td>
<td>57</td>
<td>128</td>
<td>500-800</td>
</tr>
<tr>
<td>R.m.s bunch length</td>
<td>84 cm</td>
<td>13 cm</td>
<td>7.5 cm</td>
</tr>
<tr>
<td>Circumference</td>
<td>3.8 km</td>
<td>6.9 km</td>
<td>26.7 km</td>
</tr>
<tr>
<td>Energy spread w/o laser cooling</td>
<td>(2 \cdot 10^{-4})</td>
<td>(4.5 \cdot 10^{-4})</td>
<td>(2 \cdot 10^{-4})</td>
</tr>
<tr>
<td>Normalized Emittance (N.E.)</td>
<td>(\approx 4 \pi \cdot \mu \text{m} \cdot \text{rad})</td>
<td>(\approx 4 \pi \cdot \mu \text{m} \cdot \text{rad})</td>
<td>(\approx 4 \pi \cdot \mu \text{m} \cdot \text{rad})</td>
</tr>
<tr>
<td>Dipole field</td>
<td>3.5 T</td>
<td>1.5 T</td>
<td>8.4 T</td>
</tr>
<tr>
<td>Vacuum, cold</td>
<td>(<10^{-11}) Torr ((\text{H}_2, \text{He}))</td>
<td>-</td>
<td>(<10^{-11}) Torr ((\text{H}_2, \text{He}))</td>
</tr>
</tbody>
</table>

\(^a \) For hydrogenic ions, \(\gamma_{\text{max}}^{\text{ions}} = \gamma_{\text{max}}^{p} \cdot Z / A \)

\(^b \) Estimated from proton and heavy ion data.
Table 1: Z-dependence of atomic characteristics for hydrogenic ions. In the given expressions, α is the fine structure constant, $\hbar=\epsilon=1$, m_e is the electron mass, G_F is the Fermi constant, θ_w is the Weinberg angle, and A is the ion mass number.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Approximate Expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transition Energy</td>
<td>$\Delta E_{n\rightarrow n'}$</td>
<td>$\frac{1}{2} \left(\frac{1}{n^2} - \frac{1}{n'^2} \right) \alpha^2 m_e \cdot Z^2$</td>
</tr>
<tr>
<td>Lamb Shift</td>
<td>$\Delta E_{2S\rightarrow 2P}$</td>
<td>$\frac{1}{6\pi} \alpha^5 m_e \cdot Z^4 \cdot F(Z)^a$</td>
</tr>
<tr>
<td>Weak Interaction Hamiltonian</td>
<td>\dot{H}_W</td>
<td>$i\sqrt{\frac{3}{2}} \cdot \frac{G_F m_e^3 \alpha^4}{64\pi} \cdot \left{ (1-4 \sin^2 \theta_w) - \frac{(A-Z)}{Z} \right} \cdot Z^3$</td>
</tr>
<tr>
<td>Electric Dipole Amplitude $(2S\rightarrow 2P_{1/2})$</td>
<td>$E1_{2S\rightarrow 2p}$</td>
<td>$\sqrt{\frac{3}{\alpha}} \cdot m_e^{-1} \cdot Z^{-1}$</td>
</tr>
<tr>
<td>Electric Dipole Amplitude $(1S\rightarrow 2P_{1/2})$</td>
<td>$E1$</td>
<td>$\frac{2^7}{3^5} \sqrt{\frac{2}{3\alpha}} \cdot m_e^{-1} \cdot Z^{-1}$</td>
</tr>
<tr>
<td>Forbidden Magn. Dipole Ampl. $(1S\rightarrow 2S)$</td>
<td>$M1$</td>
<td>$\frac{2^{5/2}}{3^4} \alpha^{5/2} \cdot m_e^{-1} \cdot Z^2$</td>
</tr>
<tr>
<td>Radiative Width</td>
<td>Γ_{2p}</td>
<td>$\left(\frac{2}{3} \right)^8 \alpha^5 m_e \cdot Z^4$</td>
</tr>
</tbody>
</table>

*The function $F(Z)$ is tabulated in Ref. 12. Some representative values are: $F(1)=7.7$, $F(5)=4.8$, $F(10)=3.8$, $F(40)=1.5$.

Fig. 1. The 1S→2S transition in a hydrogenic system.
Unique to \(\mathcal{P}_2 \text{gf} \):

measure in \textbf{isonuclear} chains

(+\textit{isotopic chains})

\[\downarrow \]

control of systematics for \textbf{neutron-skins}
Not only hydrogenic ions are interesting for parity violation!

Level-crossing in He-like ions

Parity-violating mixing

$$\eta = \frac{\langle \Psi_s | \hat{H}_w | \Psi_p \rangle}{E_p - E_s - i\Gamma/2}$$

Enhancement near level crossings

$$\propto Z^5$$
Optical Pumping of PSI

- Single-path polarization via optical pumping
- Both electronic and nuclear polarization
- Will polarization survive a round trip?
- If yes ☞ measure static and oscillating EDM
- Regardless ☞ nuclear-spin dependent parity violation
More atomic physics at the

- Laser cooling of PSI in the ring: enabling technology!
- Twisted light (gamma)
- PSI in strong external fields (also for parity violation)
- Tests of special relativity
- Scattering of gamma rays on ions (Thompson, Delbrück, …)
- …
Expanding Nuclear Physics Horizons with Gamma Factory

Dmitry Budker
Johannes Gutenberg-Universität Mainz, 55128 Mainz, Germany
Helmholtz-Institut, GSI Helmholtzzentrum für Schwerionenforschung, 55128 Mainz, Germany and Department of Physics, University of California, Berkeley, California 94720, USA

Julian C. Berengut
School of Physics, University of New South Wales, Sydney 2052, Australia and Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany

Victor V. Flambaum
School of Physics, University of New South Wales, Sydney 2052, Australia
Johannes Gutenberg-Universität Mainz, 55128 Mainz, Germany
Helmholtz-Institut, GSI Helmholtzzentrum für Schwerionenforschung, 55128 Mainz, Germany and The New Zealand Institute for Advanced Study, Massey University Auckland, 0632 Auckland, New Zealand

Mikhail Gorshtein
Johannes Gutenberg-Universität Mainz, 55128 Mainz, Germany

Junlan Jin
Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China

Felix Karbstein
Helmholtz-Institut Jena, Fröbelstieg 3, 07743 Jena, Germany and Theoretisch-Physikalisches Institut, Abbe Center of Photonics, Friedrich-Schiller-Universität Jena, Max-Wien-Platz 1, 07743 Jena, Germany

Mieczysław Witold Krasny
LPNHE, Sorbonne Université, Paris Diderot Sorbonne Paris Cité, CNRS/IN2P3, Paris; France and CERN, Geneva, Switzerland

Adriana Pálffy and Hans A. Weidenmüller
Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany

Vladimir Pascaultsa and Marc Vanderhaeghen
Institut für Kernphysik, Johannes Gutenberg-Universität Mainz, 55128 Mainz, Germany

Alexey Petrenko
CERN, Geneva, Switzerland and Budker Institute of Nuclear Physics, Novosibirsk, Russia

Andrey Surzhykov
Physikalisch-Technische Bundesanstalt, 38116 Braunschweig, Germany and Technische Universität Braunschweig, 38106 Braunschweig, Germany

(Dated: November 13, 2020)
Nuclear physics at the p^2GF:

- Physics opportunities with primary, secondary and tertiary beams with previously unattainable parameters
- Direct measurements of astrophysical S-factors at relevant energies
- Spectroscopy of nuclear gamma transitions on par with laser spectroscopy of atoms
- Gamma polarimetry at the 10^{-5} to 10^{-6} rad level
- Precision measurement of parity violation in hadronic and nuclear system at previously inaccessible asymmetry
- Production of high-intensity, monoenergetic and small-emittance tertiary beams: neutrons, muons, neutrinos, etc.
- ...
Nuclear physics at the \(\pi^0 \): examples

- Direct nuclear-transition spectroscopy of stored nuclei (or PSI)
- Interplay of atomic and nuclear d.o.f.
- \((\gamma, \pi)\) reactions to probe halo nuclei
- Photoproduction of pionic(kaonic) atoms, e.g., \(\gamma + ^3H \rightarrow (^3He + \pi^-)_{ns}\)

<table>
<thead>
<tr>
<th>Isotope</th>
<th>(I_\gamma^P)</th>
<th>Transition energy</th>
<th>(I_e^P)</th>
<th>Excitation lifetime</th>
</tr>
</thead>
<tbody>
<tr>
<td>(^{129}\text{Xe})</td>
<td>1/2+</td>
<td>39.578 keV</td>
<td>3/2+</td>
<td>12.8 ns</td>
</tr>
<tr>
<td>(^{229}\text{Th})</td>
<td>5/2+</td>
<td>29.19 keV</td>
<td>(5/2+)</td>
<td>30 ns</td>
</tr>
<tr>
<td>(^{161}\text{Dy})</td>
<td>5/2+</td>
<td>25.651 keV</td>
<td>5/2-</td>
<td>95.7 ns</td>
</tr>
<tr>
<td>(^{118}\text{Sn})</td>
<td>1/2+</td>
<td>23.871 keV</td>
<td>3/2+</td>
<td>109 ns</td>
</tr>
<tr>
<td>(^{151}\text{Eu})</td>
<td>5/2+</td>
<td>21.541 keV</td>
<td>7/2+</td>
<td>275 ns</td>
</tr>
<tr>
<td>(^{57}\text{Fe})</td>
<td>1/2-</td>
<td>14.412 keV</td>
<td>3/2-</td>
<td>940 ns</td>
</tr>
<tr>
<td>(^{73}\text{Ge})</td>
<td>9/2+</td>
<td>13.3 keV</td>
<td>5/2+</td>
<td>3.3 msec</td>
</tr>
<tr>
<td>(^{45}\text{Sc})</td>
<td>7/2-</td>
<td>12.4 keV</td>
<td>3/2+</td>
<td>201 sec</td>
</tr>
<tr>
<td>(^{205}\text{Pb})</td>
<td>5/2-</td>
<td>2.3 keV</td>
<td>1/2-</td>
<td>3 hours</td>
</tr>
<tr>
<td>(^{235}\text{U})</td>
<td>7/2-</td>
<td>76.7 eV</td>
<td>1/2+</td>
<td>(10^{17}) years</td>
</tr>
<tr>
<td>(^{229}\text{Th})</td>
<td>5/2+</td>
<td>8.28 eV</td>
<td>(3/2+)</td>
<td>(~10) min</td>
</tr>
</tbody>
</table>
Nuclear physics at the 21: examples

- High-resolution spectroscopy of γ-resonances
- Fano effect in γ-resonances
- Giant resonances, pigmy resonances
- (γ, α) reactions: astrophysical S-factors
- Nuclear E1 polarizabilities, e.g., $^{208}\text{Pb}(\gamma, \gamma')$
- Parity-violating photophysics
- Lepton-pair photoproduction (e^+, e^- and μ^+, μ^-)
Fixed-target experimental configurations

Excited ions

Laser pulse

Ion bunch

Targets

θ_1

Gamma-ray pulses

Parallel Spectroscopy
Fixed-target experimental configurations

a) Short laser pulses
 - Excited ions
 - Ion bunch
 - Gamma-ray pulses
 - Target

b) X-ray mirror

Pump-Probe Spectroscopy
Applied physics and enabling technologies

- Production of medical isotopes and isomers
- Nuclear waste disposal
- Gamma-ray lasers
- Precision gamma polarimetry
- …
Virtual MITP Workshop

Physics Opportunities with the Gamma Factory

30 November – 4 December 2020

- Accelerator developments
- Atomic and fundamental physics
- Search for Dark Matter
- Nuclear and particle physics
- Rare isotopes and isomers
- Nuclear-physics applications
- Studies with primary, secondary and tertiary beams
- Gamma Factory in a global landscape

Contacts
Web: https://indico.mitp.uni-mainz.de/event/214/overview
Email: POG2021@uni-mainz.de

Organizers
Dmitry Budker
Misha Gorshteyn
Witold Krasny
Adriana Palfy
Andrey Surzhikov

Workshop is sponsored by the Mainz Institute for Theoretical Physics
Conclusion