

Analysis of surface temperature dynamics of switching vacuum arc contacts

S. Gortschakow¹, St. Franke¹, D. Gonzalez¹, R. Methling¹, D. Uhrlandt¹ A. Lawall², E. D. Taylor², F. Graskowski²,

¹Leibniz Institute for Plasma Science and Technology, Greifswald, Germany ²Siemens AG, Berlin, Germany

FROM IDEA TO PROTOTYPE

Introduction

Motivation

- Vacuum interrupters possess outstanding insulation properties, have simple design, provide environmentally friendly operation – zero emission (no harmful gases, no light emission, no waste products), are maintenance-free
- High-current operation is characterized by strong electrode melting and evaporation and requires measures for reduction of thermal load
- Two basic operation principles uses magnetic field for arc control:
 - radial magnetic field (RMF) contacts provide arc rotation over the electrode surface (constricted arc)
 - axial magnetic field contacts (AMF) cause an expansion of the arc column over the total electrode surface (diffuse arc)

Subject

Study of applicability of optical methods for surface temperature determination of switching contacts with various geometry

Studied electrode systems

Radial magnetic field contact (RMF)

CuCr alloy, \varnothing 34 mm

Rotation of a constricted arc

Axial magnetic field contact (AMF)

CuCr alloy, Ø38 mm

Diffuse arcing

Experimental setup

Use of optical diagnostics: non-invasive methods, quantitative characterization of electrode surface

High-speed camera, arc dynamics

4

Methods: I NIR spectrometry

- Evaluation of NIR spectra emitted by hot electrode surface after current interruption
- Temporal resolution: 1 measurement each 1.25 ms

determination of T and ε from Planck fit

Methods: II high-speed camera (HSC) with filter

High-speed camera **IDT Motion Pro Y4** 10000-20000 fps

by surface contribution

- The method gives **qualitative** 2D temperature distribution with high temporal resolution
- **Quantitative** temperature can be obtained after comparison with results of NIR measurements at certain spatial position and time instant
- Challenge: continuum radiation of plasma must be taken into account ("removed")
- Subtraction of plasma radiation works well for diffuse arc only (AMF contacts) !

anode

radiation image dominated

NIR results: anode surface temperature

- Initial temperature in the range between 1200 K and 1420 K
- Higher temperature in case of constricted arc (TMF contacts)
- Tendency to higher temperature at longer arc duration in case of diffuse arc (AMF contacts)

HSC results: anode surface temperature

- Evaluation possible only after current maximum
- Melting point reached in a wide region

Summary

- Two optical methods for determination of surface temperature have been tested for switching vacuum contact systems.
- NIR spectroscopy works well for both type of contacts after current interruption (no plasma radiation).
- The method based on the high-speed camera techniques has restricted applicability. It works well for diffuse arcs and at certain electrode distance, which is typically reached after current maximum.
- RMF contact systems shows higher anode surface temperature after current interruption due to more localized thermal load comparing to AMF system.

Thank you very much for your attention!

Dr. Sergey Gortschakow

Leibniz Institute for Plasma Science and Technology Address: Felix-Hausdorff-Str. 2, 17489 Greifswald Phone: +49 - 3834 - 554 463, Fax: +49 - 3834 - 554 301 Email: sergey.gortschakow@inp-greifswald.de Web: www.leibniz-inp.de