Copper Surfaces: Comparative Studies in Cryogenic High Fields

Elias Waagaard

Supervisor: Marek Jacewicz

In collaboration with: S. Calatroni, R. Peacock, I. Profatilova, W. Wuensch, CERN MeVArc, March 8th 2021

Outline

- Background and motivation
- Experimental set-up
- Results Hard and Soft Cu
 - Conditioning
 - Field emission
- Summary and outlook

Background and Motivation

Image courtesy: Walter Wuensch

- Cryo experiments: provide new information for vacuum arc theories
- <u>Purpose of this study</u>: behaviour of hard/soft copper at cryogenic temperatures
- Development of low-loss cryo-accelerating structure with high-purity copper A. lino et al NIM A 866, 40-47 (2017)
- Recent studies at SLAC: cryogenic setting reduces BDR
 - Gradient: 250 MV/m @ 45 K with 2e-4 BD/pulse/m
- Possible approaches to ultra-compact linac

DOI: 10.1103/PhysRevAccelBeams.21.102002

J B Rosenzweig et al 2020 New J. Phys. 22 093067

Experimental Set-up

Typical pressure values: @ room temperature: < 1e-7 mbar @ cryo temperatures: < 5e-9 mbar

Set-up: Electrodes

Hard Cu cathode from previous experiments

Electrodes and first stage radiation shield 5

Soft Cu Cathode

Main goals of study

- Breakdown behaviour during conditioning phase
- Maximum electric field and BDR
- Field emission current and enhancement factor eta
- Comparison with previous Hard Cu data

Results: Conditioning @ 300K (d = 41µm)

Saturation voltage: 4759.4 V, saturation field: 116.1 MV/m

Results: Conditioning @ 30K (d = 59µm)

Normalization

• Saturation fields decreases with increasing gap size

$$egin{aligned} V_{ ext{sat}} &= k imes d^{0.7} \ E_{ ext{sat}} &= V_{ ext{sat}} \, / d = k imes d^{-0.3} \end{aligned}$$

(where k depends on surface properties and conditioning procedure)

• Calculate $E_{\rm sat}^{\rm est}$ at cryogenic temperatures with k from room temperature data to compensate for gap size effect

Results: Comparison of conditioning curves

• Recall normalization

$$E_{
m sat}^{
m est} = V_{
m sat}^{
m est}/d = k imes d^{-0.3}$$

			Fuises		$\times 10^{-1}$				
	Hard Cu 025			Hard Cu 030			Soft Cu 035		
Т [К]	$E_{ m sat}^{ m est}$ [MV/m]	$E_{\rm sat}$ [MV/m]	$\Delta E/E$ (%)	$E_{ m sat}^{ m est}$ [MV/m]	$E_{\rm sat}$ [MV/m]	$\Delta E/E$ (%)	$E_{ m sat}^{ m est}$ [MV/m]	$E_{ m sat}$ [MV/m]	$\Delta E/E$ (%)
30	67.4	96.7	43	78.3	117.1	50	104.1	153.7	48
300	72.2	72.2	0	83.9	83.9	0	116.1	116.1	0

Results: Field emission and Fowler-Nordheim plots

Results: Field emission Hard and Soft Cu

Field emission for Hard and Soft Cu

Summary and outlook

- Conditioning @300K and @30K
 - Successful conditioning; Soft Cu BDR = 6.96e-6 BD/pulse at flat top @300K
 - Higher accelerating gradient in cryogenic setting: @30K saturated field 48% higher than @300K
 - Higher saturation field for Soft Cu than Hard Cu, but same temperature effect
 - "Ricochet" effect?
- Field emission
 - Warm-up and cooldown of Soft Cu at different T gradient (fast/slow)
 - Little β dependence on temperature compared to Hard Cu
 - Much smaller fluctuations than Hard Cu in Fowler-Nordheim plots
- Cryogenic experiments important for high-gradient accelerating technology!

