

9th International Workshop on Mechanisms of Vacuum Arcs (MeVArc 2021)

Nano-tendril bundles behavior under plasma-relevant electric fields

V.V. Kulagin^{a*}, D.N. Sinelnikov^a, D.G. Bulgadaryan^a, N.E. Efimov^a, V.A. Kurnaev^a, D. Hwangbo^b, N. Ohno^c, S. Kajita^d

^a National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 31 Kashirskoe Sh, Moscow, 115409, Russian Federation

^b University of Tsukuba, Faculty of Pure and Applied Sciences, Ibaraki, Japan

^c Nagoya University, Graduate School of Engineering, Nagoya, Japan

^d Nagoya University, Institute of Materials and Systems for Sustainability, Nagoya, Japan

^{*}e-mail: kulagin.vladimir.l@yandex.ru

1. Introduction

- Plasma-wall interaction is one of the most critical factors determining plasma parameters in fusion devices
- Material properties and morphology of plasma-facing components (PFCs) determine this interaction
- In the case of tungsten (W) PFC, its surface morphology may change under helium plasma impact, which results in the formation of helium bubbles, <u>tungsten fuzz</u> growth, or the formation of <u>nano-tendril bundles (NTBs)</u>
- Electric field near the PFC [1]: $F = \sqrt{\frac{en_e}{\epsilon_0}} (8UT_e)^{1/4}$
- Arcing events were detected on fuzzy tungsten after experiments in NAGDIS-II
- Appearance of nanostructures on PFC leads to an increase of PFC material erosion
- If $U=150~{\rm V}, n_e=4\cdot 10^{18}{\rm m}^{-3},~T_e=6~{\rm eV} \Rightarrow F\approx 2.5~{\rm kV/mm}~-{\rm lower~than~field}$ emission (FE) threshold
- · Local field amplification near fiber tips leads to the reduction of FE threshold

Properties of tungsten fuzz in comparison with pure W

- Low thermal/electrical conductivity($\sim 1\%W$) [2, 3]
- Increased field emission current due to local field amplification [4]
- Increased probability of unipolar arc ignition [5]
- Lower sputtering yield [6]
- Lower light reflection value [7, 8]
- Lower secondary electronic emission [9]
- Reduced D retention [10]

SEM-image of tungsten fuzz

Arc tracks on a sample with NTBs

2/9

2. Nano-tendril bundles (NTBs)

Growth conditions:

- Irradiation by helium plasma ions that contain a kind of impurity:
 - Ne (from 1% to 15%)
 - Ar (from 1% to 12%)
 - N₂ (from 1% to 10%)
- Ion energy: 70-350 eV
- Surface temperature: 870-1300 K
- Helium fluence: $\sim 10^{25} \text{ m}^{-2}$

Geometric properties:

- Height H: 10-200 μ m
- Tip radius r: ~10 nm (several fuzz fibers form the tip)
- Bottom radius:
 - 5-10 μ m for a single NTB
 - might be greater if several close NTBs form one protrusion
- NTBs grow on already formed tungsten fuzz and consist of its interviewed fibers
- Geometry of structures varies, depending on irradiation parameters (impurity type, impurity to helium ratio, etc)
- Probably, NTBs grow due to re-deposition of tungsten, sputtered by the gas impurity
- Aspect ratio $(A \approx H/r)$ can be up to several thousands \Rightarrow high field enhancement near the tip of protrusions \Rightarrow reduced threshold for field emission initiation
- High porosity and low thermal conductivity of structures can lead to overheating due to Joule heat source and heat accumulation
- Reaching the melting point in few tens of ns can initiate an explosive emission or even trigger unipolar arc leading to NTBs destruction ⇒ increased erosion

SEM-image of a sample with NTBs

3.1. Field emission study in vacuum diode

Experimental setup

- 1. DC source (0-20 kV)
- 2. Cathode
- 3. Mesh anode with luminophore
- 4. Nanoampermeter
- 5. Camera

$$L = 1 \text{ mm}$$

Samples with NTBs ($\emptyset21mm$) were produced in NAGDIS-II device during He+Ne($\sim1\%$) irradiation

SEM-image of NTBS on the studied sample

- Applied voltage was manually varied during experiments
- Electron emission from samples with NTBs can be stable for a long period of time
- Emission current can reach the value up to 100 μ A under kV/mm applied field
- Estimations of field enhancement in FN-coordinates show that $\beta \sim 1000$
- Samples with NTBS can be used as FE-cathodes?

4/9

3.2. Field emission study in vacuum diode

Destruction of NTBs

- Some of NTBs were destroyed after appliance of ~kV/mm field
- The tallest and sharpest structures were dominantly destroyed (highest aspect ratio and lower bottom radius)
- There is a critical value for the electric field when destruction occurs
- The critical value for the electric field depends on geometry of NTBs and their relative to each other position
- Some microprutrusions had only tips destroyed. Probably, due to local overheating of the thinnest part of the tip
- After destruction of the tip the field enhancement decreases leading to a reduction of field emission current

4.1. Numerical study of power balance for a single structure

Laplace equation

- $\Delta \varphi = 0$
- $\varphi|_{S_1} = U$
- $\varphi|_{S_2}=0$

Heat transfer equation

•
$$c\rho \frac{\partial T}{\partial t} = \nabla \lambda \nabla T + \frac{j^2}{\kappa}$$
 Joule heat source

•
$$\lambda \frac{\partial T}{\partial n}|_{S_3} = -\sigma T^4 - \frac{j}{e} E_N$$
 Nottingham effect $E_N < 0$ (pure FE) $E_N > 0$ (pure TE)

- $T|_{S_4} = T_0$
- $\bullet \quad T|_{t=0} = T_0$
- $T_0 = 300 K$

 $\Delta-$ Laplace operator, $\varphi-$ electric potential, U- applied voltage, c=c(T)- heat capacity, $\rho-$ tungsten fuzz density, T- surface temperature, $\nabla-$ nabla operator, $\lambda=\lambda(T)-$ coefficient of thermal conductivity, j=j(T,F)- density of emission current, F- local electric filed strength, $\kappa=\kappa(T)-$ electrical conductivity, $\sigma-$ Stefan's constant, $\partial/\partial n-$ directional derivative along a surface normal vector

The studied geometry. Left part - boundary conditions, right part - variable parameters

Electric field enhancement near the top of a structure. Lines - equipotentials

- Laplace's equation was solved to get the potential distribution between electrodes
- Time-dependent heat transfer equation was solved to study the evolution of structures' temperature
- The generalized equation for density of thermo-field emission current j(T,F) was used [12]
- The problem was numerically solved in **COMSOL Multiphysics**
- NTBs were simulated as tungsten cones with density: $\rho = \rho_W/94$ [13]

8-12 March 2021 6/9

4.2. Results of numerical estimations

- Field enhancement factor is higher for smaller angles and taller structures
- Field enhancement can reach the value of several thousands
- Typical single NTBs have $\alpha = 1^{\circ} 10^{\circ}$

- Stable emission occurs under subcritical applied field when power sinks and sources compensate each other
- Unstable emission occurs when Joule heating unlimitedly increases structures' temperature, initiating thermo-field emission
- Critical values for the electric field depend on structures' geometry

Solid lines - critical field value

Dashed lines – electric field value for 1 nA current

- There is a possibility of structures' destructions under field lower 10 kV/mm
- $F_{crit}^{\alpha}[kV/mm] \approx 472.2 \cdot (7.4 + \alpha[deg])A^{-0.86}$
- $F_{crit}^0[kV/mm] \approx 6668.2 \cdot A^{-0.98}$

8-12 March 2021 7/9

5. Conclusions

Emission properties of samples with NTBs

- Simulations in COMSOL and analysis of experimental CVCs have shown that field enhancement is high (eta > 1000) for tall and sharp NTBs
- Field emission current from tungsten samples with NTBs can reach the value up to several hundred μ A under electric field of kV/mm magnitude
- Emission current depends on geometry of structures, their relative position to each other, number of NTBs on the sample
- Emission current can be stable for several hours
- Samples with NTBs, probably, can be used as flat FE-cathodes

Increased erosion under plasma-relevant electric fields

- Experimental results and modelling have shown the electric field threshold exceeding which leads to the destruction
 of main emitters
- Modelling has shown the probability of stable regime for single structures under applied field with magnitude lower than critical value
- Structures with A > 1000 can be destroyed under electric field of several kV/mm
- Increased erosion may occur under plasma-relevant electric fields (even without arcing)

8-12 March 2021

References

- [1] M.A. Lieberman, A.J. Lichtenberg, Principles of Plasma Discharges and Materials Processing: Second Edition, 2005. doi:10.1002/0471724254.
- [2] S. Kajita et al./Results in Physics 6 (2016) 877–878, Measurement of heat diffusion across fuzzy tungsten layer
- [3] Cui, S., Simmonds, M., Qin, W., Ren, F., Tynan, G. R., Doerner, R. P., & Chen, R. (2017). Thermal conductivity reduction of tungsten plasma facing material due to helium plasma irradiation in PISCES using the improved 3-omega method. Journal of Nuclear Materials, 486, 267–273. doi:10.1016/j.jnucmat.2017.01.023
- [4] D. Hwangbo, S. Kajita, N. Ohno and D. Sinelnikov, "Field Emission From Metal Surfaces Irradiated With Helium Plasmas," in IEEE Transactions on Plasma Science, vol. 45, no. 8, pp. 2080-2086, Aug. 2017, doi: 10.1109/TPS.2017.2679211.
- [5] S. Kajita, D. Hwangbo, N. Ohno, Ignition and behavior of arc spots on helium irradiated tungsten under fusion relevant condition, IEEE Trans. Plasma Sci. (2019), https://doi.org/10.1109/TPS.2019.2908193
- [6] D. Nishijima, M.J. Baldwin, R.P. Doerner, J.H. Yu, Sputtering properties of tungsten "fuzzy" surfaces, in: J. Nucl. Mater., 2011
- [7] Takamura, S., Miyamoto, T., Tomida, Y., Minagawa, T., & Ohno, N. (2011). Investigation on the effect of temperature excursion on the helium defects of tungsten surface by using compact plasma device. Journal of Nuclear Materials, 415(1), S100–S103. doi:10.1016/j.jnucmat.2010.12.021
- [8] Kajita, S., Ohno, N., Yokochi, T., Yoshida, N., Yoshihara, R., Takamura, S., & Hatae, T. (2012). Optical properties of nanostructured tungsten in near infrared range. Plasma Physics and Controlled Fusion, 54(10), 105015. doi:10.1088/0741-3335/54/10/105015
- [9] M. Patino, Y. Raitses, and R. Wirz, "Secondary electron emission from plasma-generated nanostructured tungsten fuzz," Appl. Phys. Lett., 2016.
- [10] O. V. Ogorodnikova et al., "Deuterium and helium retention in W with and without He-induced W 'fuzz' exposed to pulsed high-temperature deuterium plasma," J. Nucl. Mater., 2019.
- [11] Allaham, M. M., Forbes, R. G., Knápek, A., & Mousa, M. S. (2020). Implementation of the orthodoxy test as a validity check on experimental field emission data, Journal of Electrical Engineering, 71(1), 37-42. doi: https://doi.org/10.2478/jee-2020-0005
- [12] K.L. Jensen, Y.Y. Lau, D.W. Feldman, P.G. O'Shea, Electron emission contributions to dark current and its relation to microscopic field enhancement and heating in accelerator structures, Phys. Rev. Spec. Top. Accel. Beams. (2008). doi:10.1103/PhysRevSTAB.11.081001.
- [13] D. Bulgadaryan, D. Sinelnikov, V. Kurnaev, S. Kajita, D. Hwangbo, N. Ohno, Proton scattering from tungsten fuzz, Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms. (2018). doi:10.1016/j.nimb.2018.07.038.

8-12 March 2021