Silicon Field Emitter fabrication by TMAH Etching of convex/concave corners

MeVArc 2021

MOTIVATION

• Simple low cost process
 • No cleanroom/lithography

→ Enables newcomers access to field emission

• Easy prototyping of FEAs with different
 • Array sizes
 • Tip densities
 • Tip distances
 • Tip dimensions

→ Investigation of geometry dependent FE properties
1. Sawing of the pillar array:
 - Perpendicular trenches along the <100> axes
 - Adjustable height and pitch

2. Tip etching
 - RCA cleaning procedure
 - HF dip
 - TMAH etching (20 %, 70 °C)
FABRICATION – Variation

Type S
- Pitch: 66.7 µm
- Tip height: 32 µm
- Tip quantity: 60 x 60 = 3600

Type M
- Pitch: 110 µm
- Tip height: 48 µm
- Tip quantity: 36 x 36 = 1296

Type L
- Pitch: 250 µm
- Tip height: 106 µm
- Tip quantity: 16 x 16 = 256

Single Emitter
MEASUREMENTS – Setup

- UHV chamber
 - Pressure regulated at \(p = 10^{-5} \) mbar

- Sample holder stack
 - FEA
 - Insulating mica sheet
 - Silicon extraction grid

- Anode in triode setup
 - \(V_A = 25 \) kV
 - \(V_{ext} = 0 \) V – 1.5 kV

- Current regulation circuit

- SDD x-ray measurement
MEASUREMENTS – Procedure

- Characteristics measurement
 - 12 Sweeps in 2 V steps (3 measurements per step)
 - Up-sweep to 10 µA
 - Down-sweep to 500 pA
 - Mean of all sweeps after 5th sweep

- Lifetime and degradation measurement
 - Initial characteristics measurement
 - Constant current measurement (CCM) with regulated current at 10 µA
 - X-ray count rate detection for validation of free electron emission
 - Characteristics measurement afterwards

→ Comparable characteristics

@ 10^{-5} mbar
MEASUREMENTS – Comparison characteristics

Type S, M
- Comparable characteristics for FEAs with lowest onset field
- More fluctuations and variation between different samples for less tips with higher tip sizes

Type L
- Similar first sweep
- Strong degradation during the sweeps
 → No Lifetime for 10 µA
MEASUREMENTS – Comparison of lifetime

I-E-characteristics

Lifetime/Degradation

Longer LT due to number of tips or tips dimensions?
MEASUREMENTS – Comparison of different geometries

• Tip radii measurement
 • No significant difference in mean radius
 • Wider spread for larger tips

• Height measurement
 • Wider spread for larger tips

• h/r ratio ≈ field enhancement

• Less spread of h/r
 → More tips contributing to the emission current
 → Higher stability

Conclusion:
• larger amount of tips
• less spread of h/r ratio
 → beneficial for LT and stability
RESULTS AND DISCUSSION

Influence of doping

• n-doped:
 • Metal-like behavior
 • Relatively strong degradation

• p-doped:
 • At low currents/fields: current as function of surface dependent emission probability
 • At high currents/fields: saturation due to limited supply of electrons
 → Strong increase of operating field
 → Less degradation

Conclusion

Increased lifetime for FEAs with:

• High amount of tips
• Homogeneous geometry
• P-type doping
OUTLOOK – BoschTMAH-FEAs

- Replacement of the dicing saw step by reactive ion etching
 → Less structural limitations (scaling)
 → Higher tip densities possible
 → Higher reproducibility

- Problem:
 - No emission current measurable due to the highly reduced h/r ratio
OUTLOOK – Pillar-Saw-FEAs

- Additional process step to increase the h/r ratio without decreasing the amount of tips
 → Maximization of field enhancement/ current density
• p-type M-pillar-FEA:
 • Lowest onset field of all FEAs
 • Operating field around value of n-
 • Low degradation rate
 • Very high saturation current

OUTLOOK – Pillar-Saw-FEAs
CONCLUSION

- Fast, inexpensive & reproducible process for silicon FEAs
 - Enables newcomers access to field emission
- Tip formation based on anisotropic Si-etching
- Reproducible electrical properties at 10^{-5} mbar and 10 µA
- Investigation showed increase of LT and stability for
 - Higher amount of tips
 - Homogeneous h/r ratios
 - p-doped substrates
- Lifetime of > 100 h for emission currents of 10 µA at 10^{-5} mbar shown
- Pillar formation for enhanced h/r ratio
- Possible combination with cleanroom processes to further increase the tip density without decreasing the field enhancement
Thanks to the Team!