

Micron-scale Field Emission Model for PIC-DSMC Simulations Based on Nanoscale Surface Characterization

Supported by the Laboratory Directed Research and Development program at Sandia National Laboratories, a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA-0003525.

Additional Support: CINT User Facility (DE-AC04-

94AL85000)

Chris Moore, Ezra Bussmann, Taisuke Ohta, Ashish Jindal, Nick Roberds, Matthew Hopkins

Vacuum discharge is critical to many modern devices.

- Critical failure mechanism → Want to avoid
- Mode of operation → Want to have predictable behavior

Employ STM and PhotoEmission Electron Microscopy (PEEM) to characterize local (~0.1-10 nm) surface

- Utilize a "meso-scale" (0.1-1.0 μm) model of the surface for PIC-DSMC simulation of breakdown
- Field emission is necessary precursor to a breakdown event. No field emission → no breakdown.

We want to locally characterize the surface to eliminate β as a fit parameter:

- Create Pt electrode via sputter deposition
- Use PhotoEmission Electron Microscopy (PEEM) to measure work function (φ)
- Use Scanning Tunneling Microscopy (STM) and Atomic Force Microscopy (AFM) to measure topology (β)
- Generate probability density functions (PDFs) for local work functions and effective topological field enhancement
- Use measured atomic-scale distributions for φ and β to inform macro-scale model for discharge simulations

Generate β PDF:

Put into ES code and compute E_{norm} and A_{proj} for every element face in the resolved STM mesh and thereby create ~ 10 nm-scale PDF (weighted by projected area) of β :

 $\beta_i = \frac{1.\text{E}+00}{E_{applied}}$ $\frac{1.\text{E}+00}{1.\text{E}-01}$ $\frac{1.\text{E}-03}{1.\text{E}-04}$ $\frac{1.\text{E}-03}{1.\text{E}-05}$ $\frac{1.\text{E}-05}{0}$ $\frac{1}{2}$ $\frac{2}{3}$ $\frac{3}{4}$ Topological Field Enhancement Factor, β

We then sample from the work function and β PDF's for the mesoscale model in our PIC discharge simulations For each meso-scale element we sample appropriate number of nanoscale emitters and only store those that contribute more than 0.1% of i_{total}

• Loop over emitters to get current for a face:

$$I_{face} = \sum_{emitters} A_e A_{FN} \frac{(\beta_e E_{norm})^2}{\phi_e t^2(y)} exp \left[-\frac{B_{FN} v(y) \phi_e^{1.5}}{\beta_e E_{norm}} \right]$$

Current density contours (log scale)

By examining field emission at the nanoscale, we have attempted to create a meso-scale physics-based model suitable for predictive (and stochastic) PIC simulation of emission

• Make field emission model where β really is only geometry induced field enhancement.

Surfaces that we characterized are extremely flat: $\beta \sim 1$ over 100's of μm^2

Vacuum Arc Initiation Project

- We are interested in modeling a variety of discharge situations: from streamers at atmospheric pressure to vacuum arcs
- Vacuum discharge is critical to many modern devices.
 - Critical failure mechanism → Want to avoid
 - Mode of operation → Want to have predictable behavior
- We have a project to understand vacuum field emission from well-characterized surfaces to create physics-based models for use in large-scale PIC-DSMC breakdown simulations
 - Field emission is necessary precursor to a breakdown event. No field emission \rightarrow no breakdown.
 - Employ Scanning Tunneling Microscopy and PhotoEmission Electron Microscopy to characterize surface very locally, and then apply high fields to initiate breakdown. Very locally = \sim 0.1-10 nm
 - Address the problem of not knowing the state prior to discharge at the location of discharge by characterizing and then discharging.
 - Apply known layers of dielectric (e.g., TiO2, MgO) to challenge models and begin investigation of role of surface contaminants.
 - Utilize a "meso-scale" (0.1-1.0 μm) model of the surface for PIC-DSMC simulation of breakdown

Why local characterization?

- Fowler-Nordheim field emission:
 - Typical use in macro-scale models is to curve-fit measured j(E) from the as-built electrode
 - Can result in $\beta \sim 10-1000 \text{ !!!}$
- We want to locally characterize the surface to eliminate β as a fit parameter
 - Use Scanning Tunneling Microscopy (STM) and Atomic Force Microscopy (AFM) to measure topology (β)
 - Use PhotoEmission Electron Microscopy (PEEM) to measure work function (φ)
 - Use measured distributions for φ and β to inform macro-scale model for discharge simulations

Overview

- Create Pt electrode via sputter deposition
- Controllably contaminate Pt via Atomic Layer Deposition
- Measure work function, local topology, and electron emission for sample
- Generate probability density functions (PDF) for local work functions and effective topological field enhancement
- Incorporate measured *atomic-scale* distributions into discharge simulations by populating time-varying *meso-scale* element-based data from the PDFs
- Compare family of plasma discharge simulations to measured breakdown behavior

surface mesh in the plasma code

PEEM Measurement of Work Function Variation

- Measured spatial variation of local work function using PhotoEmission Electron Microscopy
 - Variation across given Pt surface relatively small only a few percent
 - However, φ is in the exponential and the tail of the distribution can initiate field emission and eventually breakdown
- Significant (~10%) decrease in the work function due to surface contaminants picked up via exposure to air
- Use the ~10nm-scale PDF's in meso-scale model to set element work functions in PIC-DSMC simulations

- Took the AFM (x,y,z) spatial points (here \sim 20nm resolution) and map into Cubit meshing software
- Actual surface has virtually no significant topology we will see later that $\beta \sim 1$ everywhere
- To demonstrate significant spatial variation of field emission across the surface we also compute results with the surface relief multiplied by 10×

As-measured surface relief (~ ±15nm)

Surface relief increased by 10×

AFM topology \rightarrow topological atomic-scale β

Measure surface topology before breakdown using AFM:

 Load topology into Cubit and mesh the surface in order to use electrostatic solver

• Place flat anode $\sim 10 \mu m$ from as-measured cathode

■ Use ~1 nm elements near cathode to resolve features

Simulation of Emission from AFM Surface

- With the resolved ($\Delta x < 10$ nm) mesh, simulate the emission from the AFM surface
 - Show contours of e⁻ density just above the cathode surface
 - Some clipping of the topology is seen for the largest feature
- See several large-scale features that emit, otherwise very little emission

Simulate emission in PIC-code

- ${f Compute}\ E_{norm}$ and A_{proj} for every element face in the resolved STM mesh
 - <10nm elements; ~600K surface faces</p>
- Get projection factor, $f_{proj} = \frac{\sum_{faces} A_{face}}{\sum_{faces} A_{proj,face}}$
 - For present data $f_{proj} \sim 1.15$
- Create ~10nm scale PDF of $\beta = \frac{E_{norm}}{E_{applied}}$
- Some elements will have β <1
 - Globally the surface could be tilted
 - Sides of "sharp" atomic features

Meso-scale Model for Surface Variations

- We have measured atomic-scale (1-10nm) PDF's of the work function and topological field enhancement factor
- Must convert these to the meso-scale (0.1-10 μ m). Some options:
 - 1. Just pick the meso-scale β and ϕ from the atomic-scale PDFs
 - 2. Make an effective β and ϕ to use at the meso-scale
 - 3. "Brute force" for each meso-scale element face, pick N local emitters (unique β 's and ϕ 's)

- The first option obviously has artificially large variation for different surface realizations in simulations. We will not consider it further.
 - Sometimes get an extreme tail value and then field emit based on the meso-scale element's area
 - Other times there will be no tail values picked and no field emission until much higher fields

- Can we make an effective β (and ϕ) from the data and/or atomic-scale β PDFs?
- Measure/compute the total field emission current versus E_{applied}
- Non-linear solve for β_{eff} :

$\rightarrow \beta_{eff}$ depends on $E_{applied}!$

- This makes sense: small β regions "turn on" at higher fields and pulls the effective β lower
- The precise functional form depends on the atomic-scale β PDF

Feng and Verboncoeur, PoP 13, 073105 (2006) e.g. see: Jinpu Lin et al., J. Appl. Phys. **121**, 244301 (2017) • We are left with "brute force" -- for each meso-scale element face, pick N local emitters (randomly pick unique β 's and ϕ 's) from the atomic-scale measured distributions:

$$N = \frac{A_{element}}{A_{resolved}} f_{proj}$$

• Must scale the number of local emitters to draw:

Meso-scale Model for Surface Variations

- However, we don't have to store all N local emitters for each surface element face
 - Field emission is highly non-linear and the majority of emitters (β and ϕ) can be neglected
- Store every atomic-scale emitter (β and ϕ) that appreciably contributes to the current
 - A threshold current contribution of 0.1% results in storing $\sim 0.01\%$ of the atomic-scale emitters
 - 1 μ m² element has 10⁴–10⁶ atomic-scale emitters \rightarrow store <1000 emitters.
- PIC field emission algorithm each Δt :
 - Compute E_{norm} on each surface element face
 - Loop over all ~100 atomic-scale emitters:

$$I_{face} = \sum_{emitters} A_e A_{FN} \frac{(\beta_e E_{norm})^2}{\phi_e t^2(y)} exp \left[-\frac{B_{FN} v(y) \phi_e^{1.5}}{\beta_e E_{norm}} \right]$$

Meso-scale Field Emission Simulations

- Meso-scale model does show stochastic variation in the e- density just above the surface based on the random seed
- Goal is to be able to sample many possible surfaces (e.g. different β 's and ϕ 's) and compute breakdown probabilities for as-built surfaces
- Contours of electron density just above the cathode show very different spatial variation between the meshed STM surface and the flat, meso-scale surfaces
 - The STM surface was sputtered deposited $Pt \rightarrow large$, $\sim micron$ -scale features are apparent
 - The current model picks atomic-scale emitter properties (β 's and ϕ 's) independently for every "meso-scale" surface elements. Clearly not independent for sputtered deposited Pt

Meso-scale Field Emission Simulations

- Compare computed global current versus applied field for the resolved STM surface and meso-scale model surface
 - Stochastic variation in the meso-scale currents small
- The meso-scale model currents have the same trend as the STM surface, but $\sim 12 \times i_{STM}$
 - Difference partially (mostly?) from variation in fields due to changes in gap distance for the STM surface
 - Flat anode placed 10.4μm from the mean STM cathode height

Initial Local STM Breakdown Results

- Took local field emission i-V curves with tip radius < 100nm at a distance of ~200nm
- Relatively feature-less surface with small-β within the region of the tip field footprint
- Breakdown at ~4 GV/m!

- This seems to be evidence that, at least for relatively smooth sputter deposited Pt, we do not have small- β atomic-scale features that grow into large- β features which then allow breakdown to occur at ~10 MV/m.
- Perhaps there is a special feature somewhere on a ~ 1 cm² electrode that results in (or can grow to) a large enough β to get breakdown at ~ 10 MV/m that was not present on our $\sim 10^{-6}$ cm² sampled area.

1

- Investigating surfaces at the atomic scale to characterize features relevant to vacuum field emission.
 - Surfaces that we characterized are extremely flat: β ~1 over 100's of μ m²
 - Want to clarify β -based field emission so β really is only geometry induced field enhancement.
- By examining field emission at the nanoscale, we have attempted to create a meso-scale physics-based model suitable for predictive (and stochastic) PIC simulation of emission
 - Still have a long way to go any ideas/suggestions on how to handle the correlation between beta and work function?
- Characterized region, then performed local discharge in STM (spatially constrained surface participation) → Breakdown occurred at ~4 GV/m!
 - Region was flat and uninteresting the breakdown field is consistent with breakdown from region with a small β

http://cint.lanl.gov