Kinematic Tagging and Identification of μ^\pm

B. Guo and R. Petti

University of South Carolina, Columbia SC, USA

DUNE ND meeting
October 16, 2020
Kinematic tagging must discriminate between the true μ^\pm track and wrong h^\pm track inside the SAME CC event: total visible momentum is constant (3 constraints).

Consider 4 kinematic variables for muon tagging:

- p_T^l: transverse momentum of the track candidate;
- $\theta_{\nu l}$: angle of the track candidate with respect to beam direction;
- y_{Bj}: ratio between the energy of the “hadron system” (visible energy minus track energy) and the total visible energy;
- R_{Q_T}: ratio between the transverse size of the “hadron system” $\langle Q_T^2 \rangle_H$ and that of the full event $\langle Q_T^2 \rangle$, where Q_T component of the track momentum perpendicular to the total visible momentum.
KINEMATIC TAGGING OF μ^- AND μ^+

- From reconstructed momentum vector determine if the track will reach outer yoke: (i) sample reaching outer yoke; (ii) sample NOT reaching outer yoke.

- Veto tracks interacting within STT volume (both μ^- and μ^+ tagging).

- Veto protons for μ^+ tagging using NN for proton ID.

- For events with \geq 2 candidate tracks calculate a NN value for each candidate track using two separate NN trainings for the two samples:
 - Tracks reaching outer yoke: use training with all events with \geq 2 candidate tracks, NN_1;
 - Tracks NOT reaching outer yoke: use training with events with \geq 2 candidate tracks & μ^+ NOT reaching outer yoke (NN_2), multiply NN_2 values by optimized constant $c = 15.0$.

- Select the single negative/positive track in the event with the highest NN output:

<table>
<thead>
<tr>
<th>Event sample</th>
<th>Selected track</th>
<th>Tagging efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>FHC ν_μ CC</td>
<td>μ^-</td>
<td>99.1%</td>
</tr>
<tr>
<td>RHC $\bar{\nu}_\mu$ CC</td>
<td>μ^+</td>
<td>99.3%</td>
</tr>
</tbody>
</table>
Costs and Detector Design

R. Petti
University of South Carolina

LBNE Near Detector Workshop
Columbia SC, December 12, 2009

FHC tagged μ^-

Average efficiency 99.1%

FHC

Tagging efficiency

Muon momentum (GeV/c)

Muon momentum (GeV/c)
HiResM

Costs and Detector Design

R. Petti

University of South Carolina

LBNE Near Detector Workshop

Columbia SC, December 12, 2009

RHC tagged μ^+

Average efficiency 99.3%

RHC

Tagging efficiency

Muon momentum (GeV/c)
REJECTION OF NC BACKGROUND

✦ Focus on tagged tracks NOT reaching outer yoke ($\sim 30\%$ of μ^-, 14% of μ^+):
 ● NC background from tagged tracks reaching outer yoke $\sim 0.1\%$;
 ● No cuts for tagged tracks reaching outer yoke \implies external muon identifier with single active layer.

✦ Three rejection criteria available:
 ● Energy deposition and topology (interactions) in ECAL;
 ● Track variables related to the kinematic tagging;
 ● Event kinematics based on isolation & transverse plane kinematics.

\implies Specific cuts applied will depend on the particular physics analysis

✦ For the selection of CC interactions on hydrogen only μ^\pm tagging needed: kinematic selection of H reduces NC backgrounds to $< 10^{-3}$.

✦ Initial optimization of μ^\pm identification without global event kinematics.
\implies ECAL identification with $NN > 0.36$ (0.95) for FHC ν_μ CC (RHC)
Tagged tracks reaching barrel ECAL and NOT reaching outer yoke
νμCC+̅νμCC+NC: efficiency 98.4%, wrong sign 0.5%
Selection of ν_μ CC in the FHC beam with tagged μ^-

<table>
<thead>
<tr>
<th>Target</th>
<th>Cuts</th>
<th>Efficiency</th>
<th>ν_μ CC + $\bar{\nu}_\mu$ CC + NC</th>
<th>Wrong sign contamination</th>
</tr>
</thead>
<tbody>
<tr>
<td>STT</td>
<td>Kinematic tagging of μ^-</td>
<td>99.1 %</td>
<td>93.2 %</td>
<td>1.4 %</td>
</tr>
<tr>
<td>STT</td>
<td>ECAL on tagged μ^-</td>
<td>98.4 %</td>
<td>97.5 %</td>
<td>0.5 %</td>
</tr>
<tr>
<td>ECAL</td>
<td>Kinematic tagging of μ^-</td>
<td>99.7 %</td>
<td>96.2 %</td>
<td>0.4 %</td>
</tr>
<tr>
<td>ECAL</td>
<td>ECAL on tagged μ^-</td>
<td>97.9 %</td>
<td>98.4 %</td>
<td>0.2 %</td>
</tr>
</tbody>
</table>
REJECTION OF WRONG SIGN BACKGROUND

✦ For each event apply BOTH μ^- and μ^+ tagging

\implies Select single μ^- and single μ^+ candidate within same event

✦ If wrong sign candidate exists:

● Reject events with wrong sign candidate reaching outer yoke;

● Reject events with wrong sign candidate identified in ECAL if right sign one NOT reaching outer yoke.

\implies Efficient tagging allows use of magnet yoke to filter out wrong sign background
νμCC+νμ̅CC+NC: efficiency 97.9%, wrong sign 0.3%
<table>
<thead>
<tr>
<th>Cuts</th>
<th>Efficiency</th>
<th>Purity ν_μ CC + $\bar{\nu}_\mu$ CC + NC</th>
<th>Wrong sign contamination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kinematic tagging of μ^+</td>
<td>99.3 %</td>
<td>76.2 %</td>
<td>11.1 %</td>
</tr>
<tr>
<td>ECAL on tagged μ^+</td>
<td>98.8 %</td>
<td>90.0 %</td>
<td>6.1 %</td>
</tr>
<tr>
<td>Wrong sign veto on tagged μ^-</td>
<td>97.9 %</td>
<td>97.8 %</td>
<td>0.3 %</td>
</tr>
</tbody>
</table>

Selection of $\bar{\nu}_\mu$ CC in the RHC beam with tagged μ^+
HiResM

Costs and Detector Design

R. Petti
University of South Carolina

LBNE Near Detector Workshop
Columbia SC, December 12, 2009

Muon momentum (GeV/c)

RHC

Purity

Average purity 97.3%

RHC μ^- selection

$\nu_\mu CC + \bar{\nu}_\mu CC + NC$: efficiency 95.4%, wrong sign 0.3%
<table>
<thead>
<tr>
<th>Cuts</th>
<th>Efficiency</th>
<th>ν_μ CC + $\bar{\nu}_\mu$ CC + NC</th>
<th>Wrong sign contamination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kinematic tagging of μ^-</td>
<td>98.7 %</td>
<td>66.4 %</td>
<td>22.7 %</td>
</tr>
<tr>
<td>ECAL on tagged μ^-</td>
<td>97.9 %</td>
<td>85.8 %</td>
<td>9.4 %</td>
</tr>
<tr>
<td>Wrong sign veto on tagged μ^+</td>
<td>95.4 %</td>
<td>97.3 %</td>
<td>0.3 %</td>
</tr>
</tbody>
</table>

Selection of ν_μ CC in the RHC beam with tagged μ^-
Costs and Detector Design

R. Petti
University of South Carolina

LBNE Near Detector Workshop
Columbia SC, December 12, 2009

μν:

FHC

Average purity 83.2%

FHC μ⁺ selection

νμCC+νμCC+NC: efficiency 97.1%, wrong sign 2.3%
Event kinematics from tagged μ^\pm and hadron momentum vectors: \vec{p}_l, \vec{p}_H.

Likelihood function used to separate CC/NC:

$$\mathcal{L}^{\text{NC}} = [[[\theta_{\nu H}, \theta_{\nu T}], \theta_{\mu i}, Q_T], p_T^m, \phi_{lH}]$$

- $\theta_{\nu H}$ angle of the total hadron momentum with respect to the beam direction;
- $\theta_{\nu T}$ angle of total visible momentum with respect to the beam direction;
- $\theta_{\mu i}$ minimum opening angle between muon and any other primary track;
- Q_T component of the muon momentum perpendicular to the total visible momentum;
- p_T^m missing transverse momentum;
- Φ_{lH} angle between transverse momenta of muon and hadron system.
- The square brackets denote multi-dimensional correlations.

Discriminant variable \ln of likelihood ratio between CC signal and NC bkgnd

\implies Kinematic rejection of NC needed for $\bar{\nu}_\mu$ CC selection in FHC
Distributions after muon tagging, ECAL identification and wrong sign veto
Costs and Detector Design

R. Petti
University of South Carolina

LBNE Near Detector Workshop
Columbia SC, December 12, 2009

Average purity 93.0%

$\nu_\mu CC + \bar{\nu}_\mu CC + NC$: efficiency 95.8%, wrong sign 2.6%
<table>
<thead>
<tr>
<th>Cuts</th>
<th>Efficiency</th>
<th>(\nu_\mu) CC + (\nu_\mu) CC + NC</th>
<th>Wrong sign contamination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kinematic tagging of (\mu^+)</td>
<td>99.3 %</td>
<td>9.9 %</td>
<td>78.0 %</td>
</tr>
<tr>
<td>ECAL on tagged (\mu^+)</td>
<td>98.2 %</td>
<td>34.2 %</td>
<td>55.1 %</td>
</tr>
<tr>
<td>Wrong sign veto on tagged (\mu^-)</td>
<td>97.1 %</td>
<td>83.2 %</td>
<td>2.3 %</td>
</tr>
<tr>
<td>Kinematics</td>
<td>95.8 %</td>
<td>93.0 %</td>
<td>2.6 %</td>
</tr>
</tbody>
</table>

Selection of \(\bar{\nu}_\mu \) CC in the FHC beam with tagged \(\mu^+ \)
Backup slides
CC events with more than one negative track: all tracks
CC events with more than one negative track: tracks not reaching outer yoke
CC events with more than one negative track: all tracks
CC events with more than one negative track: tracks not reaching outer yoke