

Future Circular e+e- Colliders

Markus Klute (MIT) November 5th, 2020 Korean Physical Society Meeting

Circular Lepton Colliders

- FCC-ee and CEPC are electron-positron collider sharing infrastructure with a subsequent hadron collider (FCC-hh / SppC)
- Beam energies range from 45.6 to 182.5 GeV covering the Z-pole, W-pair threshold, ZH production and the top-pair production
- Double-ring collider with 2 (or 4) interaction regions and a booster synchrotron in a ~100km tunnel
- Injector complex with linac, pre-booster, and e+ source with damping ring

Future Circular Collider Study. Volume 2: The Lepton Collider (FCC-ee) Conceptual Design Report, December 2018. Published in Eur. Phys. J. ST. Physics Briefing Book: Input for the European Strategy for Particle Physics Update 2020, arXiv:1910.11775; CERN-ESU-004

Physics Results Landscape

(4y) Z peak	E _{cm} = 91 GeV	5 10¹² e+e- → Z	LEP x 10 ⁵
(2y) WW threshold	E _{cm} = 161 GeV	108 e+e- → WW	LEP x 2.10 ³
(3y) ZH threshold	E _{cm} = 240 GeV	10 ⁶ e+e- → ZH	Never done
(4y) tt threshold	CIII	$10^6 \text{ e+e-} \rightarrow \overline{\text{tt}}$	Never done
` ''	E _{cm} = 350 GeV		Never done
(ny) H(optional)	E _{cm} = 125 GeV	10 ⁴ e+e- $\rightarrow \overline{H}$	Never done

E_{CM} errors: 100 keV 300 keV 2 MeV 5MeV <1 MeV

Timelines

CEPC Project Timeline

- Design enhancement + R&D
- Validation, & industrial preparation
- Best prepare CEPC for national government's approval
- Realization of the CEPC project, the experimental program and pursue the science
- International collaboration and coordination

Timelines

European Strategy

Preamble: The particle physics community is ready to take the next step towards even higher energies and smaller scales. The vision is to prepare a Higgs factory, followed by a future hadron collider with sensitivity to energy scales an order of magnitude higher than those of the LHC, while addressing the associated technical and environmental challenges.

High-priority future initiatives

An electron-positron Higgs factory is the highest-priority next collider. For the longer term, the European particle physics community has the ambition to operate a proton-proton collider at the highest achievable energy. Accomplishing these compelling goals will require innovation and cutting-edge technology:

the particle physics community should ramp up its R&D effort focused · on advanced accelerator technologies, in particular that for high-field superconducting magnets, including high-temperature superconductors;

• Europe, together with its international partners, should investigate the technical and financial feasibility of a future hadron collider at CERN with a centre-of-mass energy of at least 100 TeV and with an electron-positron Higgs and electroweak factory as a possible first stage. Such a feasibility study of the colliders and related infrastructure should be established as a global endeavour and be completed on the timescale of the next Strategy update.

The timely realisation of the electron-positron international Linear Collider (ILC) in Japan would be compatible with this strategy and, in that case, the European particle physics community would wish to collaborate.

FCC Main Goals (2020-2026)

Overall goal

 Perform all necessary steps and studies to enable a definitive project decision by 2026, at the anticipated date for the next ESU, and a subsequent start of civil engineering construction by 2029.

This requires successful completion of the following four main activities

- Develop and establish a governance model for project construction and operation
- Develop and establish a financing strategy
- Prepare and successfully complete all required project preparatory and administrative processes with the host states (debat public, EIA, etc.)
- Perform site investigations to enable CE planning and to prepare CE tendering.

In parallel development preparation of TDRs and physics/ experiment studies

- Machine designs and main technology R&D lines
- Establish user communities, work towards proto-experiment collaborations by 2025.

Detectors

Two detector concepts used for integration, basic performance and cost estimates:

- Linear Collider Detector group at CERN has undertaken the adaption of a detector for FCC-ee
- IDEA, detector specifically designed for FCC-ee (and CEPC)

CERN adapted design

Next step is to design detectors for physics

Opportunity to design multiple collider detector

Detectors Requirements

Physics process	Measurands	Detector subsystem	Performance requirement
$ZH, Z \to e^+e^-, \mu^+\mu^-$ $H \to \mu^+\mu^-$	$m_H, \sigma(ZH)$ $BR(H \to \mu^+ \mu^-)$	Tracker	$\Delta(1/p_T) = 2 \times 10^{-5} \oplus \frac{0.001}{p(\text{GeV})\sin^{3/2}\theta}$
$H \to b\bar{b}/c\bar{c}/gg$	${\rm BR}(H\to b\bar b/c\bar c/gg)$	Vertex	$\sigma_{r\phi} = 5 \oplus \frac{10}{p(\text{GeV}) \times \sin^{3/2} \theta} (\mu \text{m})$
$H \to q\bar{q}, WW^*, ZZ^*$	$BR(H \to q\bar{q}, WW^*, ZZ^*)$	ECAL HCAL	$\sigma_E^{ m jet}/E = 3 \sim 4\%$ at 100 GeV
$H \to \gamma \gamma$	${\rm BR}(H\to\gamma\gamma)$	ECAL	$\Delta(1/p_T) =$ $2 \times 10^{-5} \oplus \frac{0.001}{p(\text{GeV}) \sin^{3/2} \theta}$ $\sigma_{r\phi} =$ $5 \oplus \frac{10}{p(\text{GeV}) \times \sin^{3/2} \theta} (\mu \text{m})$ $\sigma_E^{\text{jet}}/E =$ $3 \sim 4\% \text{ at } 100 \text{ GeV}$ $\Delta E/E =$ $\frac{0.20}{\sqrt{E(\text{GeV})}} \oplus 0.01$ GeV.

- Excellent PID, for π /K separation up to ~20 GeV.
- High precision luminosity measurement, $\delta L / L \sim 10^{-4}$.

The Higgs Factory

(4y) Z peak	E _{cm} = 91 GeV	$5 \ 10^{12} \ \text{e+e-} \rightarrow \text{Z}$
(2y) WW threshold	E _{cm} = 161 GeV	10 ⁸ e+e- → WW
(3y) ZH threshold	E _{cm} = 240 GeV	10 ⁶ e+e- → ZH
(4y) tt threshold	E _{cm} = 350 GeV	10 ⁶ e+e- \rightarrow \overline{tt}
(ny) H(optional)	E _{cm} = 125 GeV	10⁴ e+e- → H

HL-LHC Higgs Legacy

$$(\sigma \cdot BR) \, (gg \to H \to \gamma \gamma) \ = \ \sigma_{\text{SM}}(gg \to H) \cdot BR_{\text{SM}}(H \to \gamma \gamma) \, \cdot \frac{\kappa_g^2 \cdot \kappa_\gamma^2}{\kappa_H^2}$$

	Statistical-only		Statistical + Systematic		
	ATLAS	CMS	ATLAS	CMS	
$HH \rightarrow b\bar{b}b\bar{b}$	1.4	1.2	0.61	0.95	
$HH \to b\bar{b}\tau\tau$	2.5	1.6	2.1	1.4	
$HH \to b\bar{b}\gamma\gamma$	2.1	1.8	2.0	1.8	
$HH \to b\bar{b}VV(ll\nu\nu)$	-	0.59	-	0.56	
$HH \to b\bar{b}ZZ(4l)$	-	0.37	-	0.37	
combined	3.5	2.8	3.0	2.6	
	Combined		Combined		
	4.5		4.0		

Higgs Production

→ e+e-→ZH production maximal at 240-260 GeV

Higgs Precision Measurements

- → Recoil method unique to lepton collider
- → Tag Higgs event independent of decay mode
- Provides precision and model independent measurements of
 - \bullet $\sigma(ee \rightarrow ZH) \sim g_{HZZ}^2$
 - m_H
- Key input to Γ_H
- → Sensitive channel for Higgs to invisible search

$$m_{\text{recoil}}^2 = (\sqrt{s} - E_{\ell\ell})^2 - |\vec{p}_{\ell\ell}|^2$$

Higgs self-coupling through loop corrections

- Very large datasets at high energy allow extreme precision gzH measurements
- Indirect and model-dependent probe of Higgs self-coupling

collider	1-parameter	full SMEFT
CEPC 240	18%	-
FCC-ee 240	21%	-
FCC-ee 240/365	21%	44%
FCC-ee (4IP)	15%	27%
ILC 250	36%	-
ILC 250/500	32%	58%
ILC 250/500/1000	29%	52%
CLIC 380	117%	-
CLIC 380/1500	72%	-
CLIC 380/1500/3000	49%	-

arxiv:1312.3322 arxiv:1910.00012

Higgs Couplings

Collider	HL-LHC	ILC ₂₅₀	CLIC ₃₈₀	FCC-ee			FCC-eh
Luminosity (ab ⁻¹)	3	2	0.5	5 @ 240 GeV	+1.5 @ 365 GeV	+ HL-LHC	2
Years	25	15	8	3	+4	-	20
$\delta\Gamma_{\rm H}/\Gamma_{\rm H}$ (%)	SM	3.6	4.7	2.7	1.3	1.1	SM
$\delta g_{\mathrm{HZZ}}/g_{\mathrm{HZZ}}$ (%)	1.5	0.30	0.60	0.2	0.17	0.16	0.43
$\delta g_{\mathrm{HWW}}/g_{\mathrm{HWW}}$ (%)	1.7	1.7	1.0	1.3	0.43	0.40	0.26
$\delta g_{ m Hbb}/g_{ m Hbb}$ (%)	3.7	1.7	2.1	1.3	0.61	0.56	0.74
$\delta g_{\rm Hcc}/g_{\rm Hcc}$ (%)	SM	2.3	4.4	1.7	1.21	1.18	1.35
$\delta g_{\mathrm{Hgg}}/g_{\mathrm{Hgg}}$ (%)	2.5	2.2	2.6	1.6	1.01	0.90	1.17
$\delta g_{ m H\tau\tau}/g_{ m H\tau\tau}$ (%)	1.9	1.9	3.1	1.4	0.74	0.67	1.10
$\delta g_{\mathrm{H}\mu\mu}/g_{\mathrm{H}\mu\mu}$ (%)	4.3	14.1	n.a.	10.1	9.0	3.8	n.a.
$\delta g_{\mathrm{H}\gamma\gamma}/g_{\mathrm{H}\gamma\gamma}$ (%)	1.8	6.4	n.a.	4.8	3.9	1.3	2.3
$\delta g_{ m Htt}/g_{ m Htt}$ (%)	3.4	_	-	-	_	3.1	1.7
BR _{EXO} (%)	SM	< 1.8	< 3.0	< 1.2	< 1.0	< 1.0	n.a.

- ➡ With enough work, uncertainties not limited by experimental or theoretical uncertainties. Statistics sets the floor.
- **→** 3-5 standard derivation sensitivity to Higgs self-coupling via ZH cross section dependency
- **→** Complementarity with LHC and FCC-hh program

Unique measurement

→ First generation Higgs couplings

- Not part of baseline run plan but a few years at √s = mH with high luminosity and monochromatization is an interesting addon
- Expected signal significance of 0.7σ / 10ab-1
 - Set a electron Yukawa coupling upper limit: k_e < 2.5 @95% CL
 - Reaches SM sensitivity after 5 years

Upper Limits / Precision on κ_e

EW & Top Physics Program

Observable	present	FCC-ee	FCC-ee	Comment and
	value \pm error	Stat.	Syst.	leading exp. error
m _z (keV)	91186700 ± 2200	4	100	From Z line shape scan
				Beam energy calibration
$\Gamma_{\rm Z}~({\rm keV})$	2495200 ± 2300	4	25	From Z line shape scan
2 (**)				Beam energy calibration
R_{ℓ}^{Z} (×10 ³)	20767 ± 25	0.06	0.2-1	ratio of hadrons to leptons
				acceptance for leptons
$\alpha_{\rm s}({\rm m_Z^2})~(\times 10^4)$	1196 ± 30	0.1	0.4-1.6	from R_{ℓ}^{Z} above
$R_b (\times 10^6)$	216290 ± 660	0.3	<60	ratio of bb to hadrons
				stat. extrapol. from SLD
$\sigma_{\rm had}^0 \ (\times 10^3) \ ({\rm nb})$	41541 ± 37	0.1	4	peak hadronic cross section
liad ()				luminosity measurement
$N_{\nu}(\times 10^{3})$	2996 ± 7	0.005	1	Z peak cross sections
				Luminosity measurement
$\sin^2 \theta_{\rm W}^{\rm eff}(\times 10^6)$	231480 ± 160	3	1	from $A_{FB}^{\mu\mu}$ at Z peak
				Beam energy calibration
$1/\alpha_{\rm QED}({\rm m_Z^2})(\times 10^3)$	128952 ± 14	3	small	from $A_{FB}^{\mu\mu}$ off peak
				QED&EW errors dominate
$A_{FB}^{b}, 0 \ (\times 10^{4})$	992 ± 16	0.02	1-3	b-quark asymmetry at Z pole
				from jet charge
$A_{FB}^{pol,\tau}$ (×10 ⁴)	1498 ± 49	0.15	<2	au polarization asymmetry
				au decay physics
$m_W (MeV)$	80350 ± 15	0.25	0.3	From WW threshold scan
				Beam energy calibration
$\Gamma_{ m W}~({ m MeV})$	2085 ± 42	1.2	0.3	From WW threshold scan
				Beam energy calibration
$\alpha_{\rm s}({\rm m_W^2})(\times 10^4)$	1170 ± 420	3	small	from R_{ℓ}^{W}
$N_{\nu}(\times 10^3)$	2920 ± 50	0.8	small	ratio of invis. to leptonic
				in radiative Z returns
$m_{\rm top}~({\rm MeV/c^2})$	172740 ± 500	17	small	From tt threshold scan
				QCD errors dominate
$\Gamma_{\rm top}~({ m MeV/c^2})$	1410 ± 190	45	small	From $t\bar{t}$ threshold scan
				QCD errors dominate
$\lambda_{ m top}/\lambda_{ m top}^{ m SM}$	1.2 ± 0.3	0.10	small	From tt threshold scan
^				QCD errors dominate
ttZ couplings	$\pm~30\%$	0.5 - 1.5%	small	From $\sqrt{s} = 365 \text{GeV}$ run

First set of main observables - needs to be improved

- Focus on statistical precision
- For Z and W boson mass, center-ofmass energy uncertainty will dominate
- For cross-section measurements the luminosity measurement will be limiting
- Possible experimental uncertainties are indicative
- Tau, b, and c observables to be added
- Theory work is critical and has been initiated. A lot of work ahead.
- Aim for next study: detector design to match experimental systematic uncertainties to statistical precision

W Mass Measurement

- W pair threshold scan with $\Rightarrow \Delta M_W = 0.45$ MeV (stat. only)
 - Leading systematic: beam energy
- Direct W mass reconstruction => $\Delta M_W = 0.22$ MeV (stat. only)
 - Leading systematic: theoretical

Can systematic uncertainties meet statistical precision?

Top-pair threshold scan

Top mass and width can be measured directly with an accurate top cross section threshold scan

Precise knowledge of α_s improved correlation of m_t, Γ_t, and Y_t drastically

19 <u>arxiv:1604.08122</u>

Tau and Flavor Physics

Observable	Present	FCC-ee	FCC-ee
	value \pm error	stat.	syst.
$m_{\tau} \; ({ m MeV})$	1776.86 ± 0.12	0.004	0.1
$\mathcal{B}(\tau \to \mathrm{e}\bar{\nu}\nu) \ (\%)$	17.82 ± 0.05	0.0001	0.003
$\mathcal{B}(au o \mu ar{ u} u) \ (\%)$	17.39 ± 0.05	0.0001	0.003
$ au_{ au}$ (fs)	290.3 ± 0.5	0.001	0.04

Can systematic uncertainties meet statistical precision?

Decay	Present bound	FCC-ee sensitivity
$Z \to \mu e$	0.75×10^{-6}	$10^{-10} - 10^{-8}$
$Z o au \mu$	12×10^{-6}	10^{-9}
$Z \to \tau e$	9.8×10^{-6}	10^{-9}
$ au o \mu \gamma$	4.4×10^{-8}	2×10^{-9}
$ au ightarrow 3 \mu$	2.1×10^{-8}	10^{-10}

arXiv:1811.09408

Discovery Physics

or l - v

arXiv:1411.5230

Economic extension by adding a number of Fermionic singlets

"Right-handed" or "sterile" neutrinos.

Two mass-differences ⇒ at least two sterile neutrinos.

New mass scale, a priori unrelated to the known ones.

Many constraints from experiments on all energy scales.

Discovery Physics

- EFT D6 operators (some assumptions)
- Higgs and EWPOs are complementary

CEPC: International workshop - October 26-28

→ Excellent resource: https://indico.ihep.ac.cn/event/11444/

The 2020 International Workshop on the High Energy Circular Electron Positron Collider (Oct. 26-28, 2020)

26-28 October 2020

onangnai

Asia/Shanghai timezone

Overview

CEPC International Advisory Committee

Workshop Organizing Committees

Timetable

Contribution List

Registration

The 2020 international workshop on the high energy Circular Electron-Positron Collider (CEPC) will take place between October 26-28, 2020 at Shanghai Jiao Tong University and Tsung-Dao Lee Institute in Shanghai. As you would have expected, this workshop will be mostly online, with some local and domestic in-person participation.

Search

The workshop intends to gather scientists around the world to study the physics potentials of the CEPC, pursue international collaborations for accelerator and detector optimization, deepen R&D work of critical technologies, and develop initial plans towards Technical Design Reports (TDR). The high energy Super proton-proton Collider (SppC), a possible upgrade of the CEPC, will also be discussed. Furthermore, industrial partnership for technology R&Ds and industrialization preparation of CEPC-SppC will be explored.

FCC Workshop - November 9-13

- → https://indico.cern.ch/event/923801/
- → https://indico.cern.ch/event/932973/

FCC November Week 2020

9-13 November 2020

Europe/Zurich timezone

Search... \mathcal{P}

Overview

Timetable

Programme at a glance

CERN lightweight account registration process

Contribution List

Speaker List

Registration

Code of conduct

Practical ZOOM handbook

Instructions for session chairs, conveners and

The **Future Circular Collider Innovation Study** (FCCIS) will deliver a design and an implementation plan for a new research infrastructure, consisting of a 100 km long, circular tunnel and a dozen surface sites. It will initially host an electron-positron particle collider. With an energy frontier hadron collider as a second step, it can serve a world-wide community through the end of the 21st century. This project will validate the key performance enablers at particle accelerators.

Part of this event is the **4th FCC Physics and Experiments Workshop** (dedicated **agenda and registration**: **click here**)

This will be a remote-only event using Zoom for webcast.

Presentations for non physics or theory activities are on invitation only.

Conclusion

FCC-ee/CEPC offer a huge physics program with

- → Higgs and top measurements with > 10⁶ events in short (3-5y) runs
- → Unique possibilities
 - Electron Yukawa coupling
 - TeraZ + beam energy calibration
 - keV and ppm precision on EWPOs at Z resonance and WW threshold
 - \bullet α_{QED} (m_Z), α_{S} (m_Z), $\sin^{2}\theta_{W}^{eff}$ and G τ
 - Searches for LLPs and rare phenomena (LFV, LNF, light scalars, ...)
 - Flavor physics program with 10^{12} Bs and 10^{11} τ 's
 - Offering sensitivity to new physics at scales of 10 to 70 TeV
- Ambitious program aiming for significant progress in understanding of nature
- Many opportunities to participate
- Challenge is to imagine/optimize detector to match statistical power and to sharpen the theory calculations
- Last but not least: an essential springboard towards 100 TeV pp collisions