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2 double-sided disks in each endcap
Fraction of coverage per disk > 85%
— 1.8 hits per track
— oy = 35 ps per track (oy < 50 ps per hit)
Total sensor area = 7.9 m2 per endcap
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LGAD sensors in module

2: LGAD sensor

4: Mounting film

5: AIN carrier

6: Mounting film

7: Mounting screw
8: Front-end hybrid

9: Adhesive film

10: Readout connector
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LGAD sensor
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one pad (pixel) = 1.3x1.3 mm?
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Parameters that affect time resolution
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Parameters that affect time resolution

2 _ 2 2 2
jonization ~ ®time walk T Laudau noise T ODjstortion
lllustration of time walk Total number and local density of e-h production vary event by event

basis

Can cause change in signal amplitude (time walk) and irregularities in current signal (Landau
noise)

Time walk minimized by fast slew rate and low intrinsic noise (also in readout chain)

Laudau noise needs to be measured carefully

Distortion of signal shape caused by non-uniform drift velocity and
weighting field

Reduced by (1) saturated drift velocity with high field and (2) uniform weighting field using
parallel-plate geometry



Main contributor to time resolution
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Main contributor to time resolution
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Main contributor to time resolution
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Sensor manufacturers and testing goals

Manufacturers: Centro Nacional de Microelectronica (CNM), Fondazione Bruno Kessler
(FBK), Hamamatsu Photonics (HPK) and potentially Novel Device Laboratory (NDL)

The design of sensors needs detailed optimization to achieve high gain, low noise, and
uniform response

Parameters to be studied and optimized for sensor development

Fill factor (active area/total area): high fill factor to increase number of two-hit tracks (small gap, edge)
Hit efficiency and signal uniformity: high and uniform gain within the pad, sensor, and wafers

Gain and noise: high gain and low noise crucial for electronics to achieve excellent time resolution
Longterm stability: stability may be affected by annealing effect

Failure modes: high Vyias might lead to detector damage, e.q., irradiated sensors can die during operation

Time resolution: use custom low-noise FE boards to measure sensor’s time resolution



Schedule of sensor testing

2020

2021

2022

o [w @ @ e [w]a]o

today

Receive v2 R&D sensors from vendors

* Choice of best gain layer doping,
edges, inter-pad distance, ...

Jae Hyeok Yoo (Korea University)

Receive v3 R&D sensors from vendors

* Implementation of the final set of
parameters

KPS Fall 2020 (11/05/2020)
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Probe station
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https://www.micromanipulator.com/wafer-probe-station/

Beta source test setup @ FNAL

How are sensors tested?

Test beam setup @ FNAL
Simplified Setup ETL Cold Box

Scintillator
120 GeV  strip (7)  Pixel (4)  Trigger

beam

Strip (2)

Strip and Pixel

e Tracking system provides
~50 pm resolution

Cold Box

e Up to 5 sensors

e Motorized rack

Andres Abreu Nazario

Ryan Heller
Schematic

LGAD/ PCB
MCP

restrict path length

Tungsten plnhole (1.5 mm):

Probe station

Measure IV and CV curves

Data provided by manufacturers

Test beam
Measure gain, hit efficiency, timing

At FNAL, 1-2 times per year

Beta source

Measure gain, timing

Laser

Measure uniformity of gain, inter-pad gap



Testing results - FNAL test beam

Simplified Setup ETL Cold Box

Scintillator MCP :
120 GeV  strip (7)  Pixel (4)  Trigger LGADs Strip (2)

beam
—

Strip and Pixel Cold Box

e Tracking system provides e Up to 5 sensors
~50 pm resolution e Motorized rack

Andres Abreu Nazario
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HPK type 3.1 4x4 LGAD array FBK 2x8 LGAD array

Tested sensors: 16-ch HPK and FBK arrays

» Pad size (earlier test sensors) : 1x3 mm?2 (HPK) and 2x2 mm?2 (FBK)

Results from FNAL test beam

* 120 GeV proton beam, MCP PMT as a time reference (res ~10 ps),
strip+pixel tracking system



Testing results - gain uniformity
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CMS Preliminary

Testing results - hit efficiency, inter-pad gap
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Testing results - timing

CMS Preliminary
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Testing results - radiation hardness

Max Fluence vs fraction of area
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Max expected fluence at the end of HL-LHC:
15 X 1015 neq/Cm2

Radiation can cause decrease in gain (due to worse
charge collection efficiency, change in doping
profile) and higher noise (leakage current)
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To maintain the gain, need operate sensor at
higher Vpias

Is the sensor performance maintained by the
end of LHC life? — Test irradiated sensors
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CMS Preliminary

Testing results - radiation hardness

HPK 4x4 (Non-irradiated)
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Hit efficiency > 99% for most
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of radiation

4 x 10 neq/cm?: more than 50% of

the sensors will have less fluence at
the end of HL-LHC



Events

Testing results - radiation hardness

Time resolution before/after irradiation

Non-irradiated 8 x 104 Neqg/cm?
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Sensor testing status and what’s next

What we learned so far: manufacturers can meet all required features

Doping uniformity: 1-2% variations in a wafer and among wafers
Sensors provide large signal (>15 fC) with low noise until the end of HL-LHC (1.5 x 10%° Neq/cm?)
Inter-pad gap: 50-100 um

What needs to be tested in the current/next version of prototypes?

No degradation of performance up to 1.5 x 101° Neq/cm?

Production uniformity, particularly, of large sensors (16x16 and 32x16 pads)

Longterm stability

A few groups are contributing to the effort

Torino, FNAL, UCSB, Santander, Helsinki



Sensor testing facility in Korea

Setting up sensor testing facility using laser at Korea University

Laser provides excellent position granularity to study inter-pad design and
uniformity of sensors

Automated sample stage makes testing large sensors convenient

Exploring possibility of using probe station



Basics of sensor testing using laser

N

LASER RADIATION

Shoot laser to LGAD sensor

Fast (pulse duration=350 - 4000 ps) and narrow
(FWHM < 11 um)

Wave length: 1064 nm (absorption depth in silicon =1
mm)

pulse power: few - 100 MIPs (equivalent in 300 pum Si)

Automated sensor position control

Moving range: 10x10x10 cm

Position resolution: < 1 um

Use Transient Current Technique (TCT)
apparatus by Particulars

Can save time for setting up the facility


http://particulars.si/index.php
http://particulars.si/index.php
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Sensor testing plan at KU

2020 2021 2022
today
Receive v2 R&D sensors from vendors Receive v3 R&D sensors from vendors Ready for Sznsc;r
: production
* Choice of best gain layer doping, * |Implementation of the final set of preproduction order
edges, inter-pad distance, ... parameters
KOREA
KOREA 2020 2021 2022

longterm stability &
large-scale system

Person power: 1 faculty, 1 postdoc, 2 students

Jae Hyeok Yoo (Korea University) KPS Fall 2020 (11/05/2020)



Summary and outlook

ETL sensor testing is advancing well

Making a good progress in prototype v2 testing: vendors can meet the LGAD spec requirements

Setting up sensor testing facility using laser at Korea University

Possibly start measurements this winter

Plan to make important contributions to prototype v3 testing!

Exploring possibility of using probe station

Close collaboration with sensor experts in FNAL, UCSB and Torino groups
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Key sensor characteristics

Depletion region Minimize rise time, sufficient
thickness | . charge, gain uniformity

Minimize capacitance,

______________________________________________________________________________________________ Occupancy ~1%
Sensor size 2x4 cme Optimize wafer usage
____________________________________________________ (16x32)  TOTTeRMERIRRE

Interpad gap <90 um Fill factor > 85%

Time res. after
irradiation

< 40 ps up to 1.7-1015 neg/cm?

Karri Folan DePatrillo



Fluence [10'%n,,/cm?]

Max Fluence [10'% n.,/cm?]

Fluence vs radius
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Radiation

Fluence (neg/cm?: 1 MeV neutron

equivalent per cm2) as a function of radius
for 1/4, 1/2, and full lifetime of HL-LHC

Until 1/2 lifetime, fluence is less than
1 x 101 neq/cm? (top plot)

Large fraction of ETL will receive mild dose
50% of sensors: < 5 x 10! neq/cm?
80% of sensors: < 8 x 10! Neq/cm?

10% of sensors: > 1 x 101 neq/cm?



Silicon absorption depth

Absorption depth in Silicon

P
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Jae Hyeok Yoo (Korea University)

https://www.pveducation.org/pvcdrom/materials/optical-properties-of-silicon
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