Nucleon tomography with GPDs at the EIC

Hyon-Suk Jo Kyungpook National University

2020 KPS Fall Meeting

Focus Session : Cornerstone for future collider projects

November 5, 2020

Generalized parton distributions (GPDs)

In this model, valence quarks (high x) are at the heart of the nucleon and sea quarks (low x) extend to its periphery

Interpretation of GPDs : impact parameter b_{\perp} as a function of x

Transverse position b_{\perp} of the partons inside the nucleon for different values of longitudinal momentum fraction *x*

Deeply Virtual Compton Scattering (DVCS) and GPDs

high Q^2 , small t, fixed x_B

 $e N \longrightarrow e' N' \gamma$

DVCS is the key reaction to access the GPDs as it offers the simplest interpretation in terms of GPDs At leading-order QCD, leading twist, there are 4 chiral-even (parton helicity is conserved) GPDs for each parton

$H^{q,g}(x,\xi,t)$	$E^{q,g}(x,\xi,t)$	for sum over parton helicities
$\widetilde{H}^{q,g}(x,\xi,t)$	$\widetilde{E}^{q,g}(x,\xi,t)$	for difference over parton helicities
nucleon helicity conserved	nucleon helicity changed	

DVCS and Bethe-Heitler processes

BH fully calculable in QED

DVCS Bethe-Heitler GPDs σ**(eN→eNγ) =** DVCS and Bethe-Heitler (BH) experimentally undistinguishable interference between the 2 processes $T^{DVCS} \sim \int_{-\infty}^{+1} \frac{H(x,\xi,t)}{x\pm\xi+i\varepsilon} dx + \dots \sim P \int_{-\infty}^{+1} \frac{H(x,\xi,t)}{x\pm\xi} dx - i\pi H(\pm\xi,\xi,t) + \dots$ **Unpolarized Cross Section** $\frac{d^4\sigma}{dQ^2 dx_B dt d\phi} \approx \left| T^{DVCS} + T^{BH} \right|^2 = \left| T^{DVCS} \right|^2 + \left| T^{BH} \right|^2 + I$ $\frac{d^{4} \vec{\sigma}}{dQ^{2} dx_{B} dt d\phi} - \frac{d^{4} \vec{\sigma}}{dQ^{2} dx_{B} dt d\phi} \propto \operatorname{Im}(T_{DVCS}) \times T_{BH}$ Beam-polarized Cross-Section difference

Proton spin puzzle : The origin of the proton spin is still unknown

$$\frac{1}{2} = J^{q} + J^{g} = \frac{1}{2}\Delta\Sigma + \Delta G + L_{q} + L_{g}$$

Orbital angular momentum

GPDs H and E provide access to the total angular momentum of the partons in the nucleon

Ji's angular momentum sum rule:

$$\mathsf{J}^{q,g} = \frac{1}{2} \int_{-1}^{1} x dx (\mathsf{H}^{q,g}(x,\xi,t=0) + \mathsf{E}^{q,g}(x,\xi,t=0))$$

Compton Form Factors (CFFs) and DVCS observables

Compton
Form Factors
$$Re\mathcal{H}_q = e_q^2 P \int_0^{+1} (H^q(x,\xi,t) - H^q(-x,\xi,t)) \left[\frac{1}{\xi - x} + \frac{1}{\xi + x} \right] dx$$

 $Im\mathcal{H}_q = \pi e_q^2 \left[H^q(\xi,\xi,t) - H^q(-\xi,\xi,t) \right]$
 $\xi = x_{\text{B}}/(2-x_{\text{B}})$ $k = t/4\text{M}^2$

Each DVCS observable is sensitive to a different combination of GPDs

Proton Neutron

Polarized beam, unpolarized target: $\Delta \sigma_{LU} \sim \sin \phi \operatorname{Im} \{F_1 \mathcal{H} + \xi(F_1 + F_2) \widetilde{\mathcal{H}} - kF_2 \mathcal{E} + \ldots\} \longrightarrow \frac{Im \{\mathcal{H}_p, \widetilde{\mathcal{H}}_p, \mathcal{E}_p\}}{Im \{\mathcal{H}_n, \widetilde{\mathcal{H}}_n, \mathcal{E}_n\}}$

Unpolarized beam, longitudinal target: $\Delta \sigma_{UL} \sim \sin \phi Im \{F_1 \widetilde{\mathcal{H}} + \xi(F_1 + F_2)(\mathcal{H} + x_B/2\mathcal{E}) - \xi k F_2 \widetilde{\mathcal{E}}\} \longrightarrow \frac{Im \{\mathcal{H}_p, \widetilde{\mathcal{H}}_p\}}{Im \{\mathcal{H}_n, \mathcal{E}_n\}}$

Polarized beam, longitudinal target: $\Delta \sigma_{LL} \sim (A + B \cos \phi) \operatorname{Re} \{F_1 \widetilde{\mathcal{H}} + \xi (F_1 + F_2) (\mathcal{H} + x_B/2\mathcal{E}) + \dots\} \longrightarrow \frac{Re \{\mathcal{H}_p, \widetilde{\mathcal{H}}_p\}}{Re \{\mathcal{H}_n, \mathcal{E}_n\}}$

Unpolarized beam, transverse target: $\Delta \sigma_{\text{UT}} \sim \cos\phi \sin(\phi_{\text{s}} - \phi) \text{Im} \{k(F_{2}\mathcal{H} - F_{1}\mathcal{E}) + \dots \} \longrightarrow \lim_{l \to \infty} \{\mathcal{H}_{\mathbf{n}}, \mathcal{H}_{\mathbf{n}}\}$

Quark-flavor separation of GPDs

- 1st method : Neutron DVCS
 - A combined analysis of DVCS observables for proton and neutron (deuterium) targets is needed to perform a quark-flavor separation of the GPDs
 - High sensitivity to GPD E with a polarized beam

- 2nd method : Deeply virtual meson production (DVMP)
 - DVMP cross-section measurements are another way to access quark-flavor separation of GPDs
 - Gives also access to transversity GPDs (chiralodd GPDs, where parton helicity is changed)

DVCS and DVMP diagrams for gluons GPDs

Kinematic coverage of past and current DVCS experiments

Jefferson Lab 6 GeV and the CLAS detector

Jefferson Lab

DVCS unpolarized and beam-polarized cross sections from CLAS data

Interpretation of fit results obtained from the cross sections

DVCS on longitudinally polarized target from CLAS data

DVCS on longitudinally polarized target from CLAS data

Extraction of H_{Im} from the fits of Jefferson Lab 6 GeV data

- **G** Fit to CLAS σ and $\Delta \sigma$
- Fit to CLAS σ , $\Delta \sigma$, A_{UL} , A_{LL}
- Fit to Hall A σ and $\Delta \sigma$
- ★ VGG model

Fits in each (Q^2, x_B, t) bin of data

$$\mathsf{H}_{\mathsf{Im}}(\xi,t) = \mathsf{A}(\xi) e^{\mathsf{b}(\xi)t}$$

$$\xi \approx \frac{x_B}{2 - x_B}$$

R. Dupré, M. Guidal, S. Niccolai, and M. Vanderhaeghen, Eur. Phys. J. A 53, 171 (2017) 16

From CFFs to proton tomography

Longitudinal momentum fraction x

R. Dupré, M. Guidal, S. Niccolai, and M. Vanderhaeghen, Eur. Phys. J. A 53, 171 (2017) 17

Jefferson Lab upgrade to 12 GeV

Jefferson Lab 12 GeV and the new CLAS12 detector

Jefferson Lab

Data taking with the new CLAS12 detector started in 2018

DVCS experiments in Hall A and Hall C of Jefferson Lab

Projected results for CFFs with CLAS12

21

First look at DVCS A_{LU} with CLAS12 preliminary data

$$A_{LU} = \frac{\sigma^+ - \sigma^-}{\sigma^+ + \sigma^-}$$

Beam spin asymmetry

$$egin{aligned} \mathcal{A}_{LU} &= rac{1}{P} rac{\mathcal{N}^+(\phi_{\mathit{Trento}}) - \mathcal{N}^-(\phi_{\mathit{Trento}})}{\mathcal{N}^+(\phi_{\mathit{Trento}}) + \mathcal{N}^-(\phi_{\mathit{Trento}})} \end{aligned}$$

- *P*: electron polarization
- N⁺⁽⁻⁾: number of photon electroproduction candidates with beam helicity +(-)
- Analysis based on 2% of approved beam time

Raw Beam-Spin Asymmetry $ep \rightarrow ep\gamma$

DVCS at the Electron-Ion Collider (EIC)

Nucleon tomography of the gluons and sea quarks (low momentum fraction x)

The Electron-Ion Collider (EIC) will be constructed at BNL

eRHIC design (BNL)

DVCS at the EIC : gluons and sea quarks

- Collision of polarized electrons with polarized protons, light and heavy nuclei - High Luminosity : $L_{ep} \ge 10^{33-34} \text{ cm}^{-2} \text{ s}^{-1}$ (100-1000 times HERA)

Spatial distributions of sea quarks from EIC DVCS pseudo data

Spatial distributions obtained from GPD fits to EIC simulated DVCS data

Gluon distributions from EIC J/ ψ pseudo-data

Projected gluon distributions vs transverse distance from the center of the nucleon from EIC pseudo-data of J/ψ production cross section

Transverse distance from nucleon center b_T (fm)

Overview

- DVCS data from Jefferson Lab 6 GeV were used to extract a first experimental result of nucleon tomography.
- Jefferson Lab 12 GeV will provide high-precision data covering a large unexplored kinematic domain at high x.
- While Jefferson Lab is a unique facility to study the valence quarks, the future Electron-Ion Collider (EIC) will provide high-precision GPD measurements at low x, allowing us to perform nucleon tomography of the gluons and sea quarks.

Thank you