Introduction and Status of the Water **Cherenkov Test Experiment**

WCTE Workshop, 2020/11/23

Mark Hartz

Outline

- Motivation of a water Cherenkov test beam experiment
- Proposed configurations of the WCTE
- Status of the WCTE
- Introduction to this workshop

Water Cherenkov Detector Technology - Present Super-Kamiokande

• The Super-K experiment:

- Study of atmospheric and solar neutrinos
- Search for nucleon decay
- Far detector for T2K accelerator neutrino studies
- As announced at Neutrino 2020 loading with Gd₂(SO₄)₃ is starting - allow high efficiency detection of neutrons
- Uncertainties on detector modeling for T2K analyses range from **2.5%-13%** on predicted event rates
- Water/ice Cherenkov detectors as neutrino telescopes (IceCube, KM3NeT)

KM3NeT multi-PMT Digital Optical Module (DOM)

T2K, Neutrino 2020

Table 21: Uncertainty on the number of event in each SK sample broken by error source before the BANFF fit.

Error source	1F FHC	$\mathbb{R}\mu$ FHC	RHC	1 Re FHC CC1 π^+	FHC/RH
Flux	5.1%	4.7% 4.8%	4.7%	4.9%	2.7%
Cross-section (all)	10.1%	10.1% 11.9%	10.3%	12.0%	10.4%
SK+SI+PN	2.9%	$2.5\% \parallel 3.3\%$	4.4%	13.4%	1.4%
Total	$\parallel 11.1\%$	$11.3\% \parallel 13.0\%$	12.1%	18.7%	10.7%

[C]

The Future, Hyper-Kamiokande

- Hyper-K is the next-generation successor of Super-K
 - 8x larger fiducial mass than Super-K
 - **2.5x more intense beam** compared to current T2K
 - Neutrino oscillation measurements made with 1-3% statistical precision
 - Systematic error reduction is critical
 - Calibration of the detector response at the 1% level
 - Understanding of neutrino flux and interaction cross section systematic errors at the 1%-3% level
- Intermediate Water Cherenkov Detector (IWCD) is part of Hyper-K project
 - Measure neutrino interactions over a range of neutrino energies
 - Detector size is ~800 ton, 6 m tall x 8 m diameter inner detector
 - Requires calibration at the 1% level
 - Uses multi-PMT photon detectors

Hyper-Kamiokande Detector

The Future, Beyond Hyper-Kamiokande

- ESSnuSB neutrino oscillation experiment at second oscillation maximum
 - Neutrino source at European Spallation Source
 - Nearby water Cherenkov near detector
 - Megaton scale water Cherenkov far detector ~540 km from neutrino source
 - Similar requirements to Hyper-K
- **THEIA** experiment is another many kiloton scale detector
 - Use water-based liquid scintillator (WbLS) in detector to have both Cherenkov and scintillation light
 - New technology requires:
 - Intermediate timescale smaller detectors to develop WbLS technology
 - Development of photosensor technologies to take advantage of two types of light
 - More in talk by M. Wilking on Wednesday

MEMPHYS like Cherenkov detector(MEgaton Mass PHYSics studied by LAGUNA Two cylindrical tanks Total fiducial volume 500 kt (~20xSuperK) 100 m Readout: ~240k 8" PMTs 30% optical coverage (arXiv: hep-ex/0607026) 65 m

FIG. 3. Drawing of the MEMPHYS water Cherenkov detector design.

THEIA physics program includes:

Neutrinoless double beta decay Long baseline neutrinos Solar neutrinos Nucleon decay Supernova neutrinos Geoneutrinos

6

Proposed Water Cherenkov Test Experiment (WCTE)

- Platform to:
 - Test new new technologies for water Cherenkov/optical detectors, e.g. multi-PMTs, WbLS, etc.

 - Measure important physics processes such as Cherenkov light production and hadron scattering necessary detector modeling
- We propose a test experiment that is ~4 m diameter x 4 m tall
- Tertiary or secondary particle fluxes of π^{\pm} , p, μ , e in the 200 MeV/c-1200 MeV/c range

• Apply calibration techniques with known particle fluxes to validate 1% level calibration at GeV scale

Where to Operate the WCTE

- Require experimental hall large enough to house detector
- Need secondary particle beam with momenta ranging from ~400 MeV/c to ~15 GeV/c
- Propose to use the T9 secondary beam line (fed by PS) in the **CERN East Area**
- Secondary particle rates of up to 5e6 per spill
- Secondary beam line is ~40 m long
 - Low momentum pions decay-in-flight
 - Need tertiary production target close to the detector for pions
- Propose configuration with tertiary production target and spectrometer as shown to left

More in today's talks by M. Pavin

WCTE Spectrometer

- Spectrometer based on Halbach array permanent magnets with dipole fields
 - Field strengths of ~1T achievable
- Silicon strip detectors for tracking layers
- Can achieve momentum resolution of 5% or better
- window design)

Transverse distribution of tertiary particles

More in today's talks by M. Pavin and P. Sarin

• Second compensation magnet keeps the beam spot relatively small (important for beam

Particle Identification

- TOF detector with 100 ps resolution
 - Can use resistive plate chambers (RPC)
 - Sufficient resolution to separate pion, kaon and proton (lower right)
- For high-momentum pion/electron separation, we can use an aerogel Cherenkov threshold detector
- To separate muons from pion decay-in-flight, the TOF detector is segmented

10

WCTE Beam Configurations

• We expect to run in two different beam configurations:

- Secondary beam for electron and muon fluxes
- Target is ~40 m upstream
 - Most low momentum pions decay-in-flight before detector

More on moving detector in talk by O. Jeremy tomorrow

- Tertiary beam configuration places target close to the detector
- Compact spectrometer just downstream of target
- Low momentum pion fluxes possible

The Detector

- The detector is installed in a stainless steal 304 tank with ~6 mm thick walls
- A support structure to hold the photosensors in installed inside the tank
- Maximum number of photosensors is 128
- The tank lid will have ports for cabling, water circulation pipes, calibration source deployment

More detail in talks by A. Konaka, S. **Garode and S. Joshi tomorrow**

Port For water

Beam Windows/Pipes

- Aim to minimize material where beam enters detector
 - Beam pipe for secondary beam configuration
 - Beam window for tertiary beam configuration

- Developing design of extendable beam pipe to vary injection point in detector
 - Segmented pipe that can be moved into and our of detector provides structural support
 - Surrounded by flexible water-tight material

More in talk by S. Garode tomorrow

Photosensors & Reconstruction More in talks by T. Linder and **M. Ziembicki tomorrow**

- We will use multi-PMT photo detectors in IWCD
- Very good timing resolution (1.6 ns FWHM) 3-inch diameter PMTs
- In water-tight module with FADC based readout electronics
- Power and communication to to mPMT with single cable using PoE

Example of simulated 400 MeV/c muon

Similar reconstruction performance to IWCD

More in talk by M. Ishitsuka today 14

Other WCTE Systems

- Water purification system:
 - UV light to break down biologicals
 - Micro/nano-filters
 - Ion exchange resin
 - Chiller (~2 kW of cooling)
 - Capability for Gd₂(SO₄)₃ loading
- DAQ system will be based on IWCD/Hyper-K system
 - Need to handle beam triggers and monitor DAQ
 - See talk by B. Richards on Tuesday
- Calibration systems:

Calibration System	Super-Kamiokande	WCTE and IWCD	Hyper-Kamiokande	
Light Injectors	\checkmark	\checkmark	\checkmark	
Diffuser Ball	(√)	\checkmark	(√)	
Nickel Source	\checkmark	\checkmark	\checkmark	
Neutron Source	\checkmark	(√)	\checkmark	
Photogrammetry	\checkmark	(√)	\checkmark	
mPMT LEDs		\checkmark	\checkmark	
Muon tracker		\checkmark		

See talk by A. Konaka on Tuesday WCTE Water purification system 2 ton/hr

See talk by P. de Perio on Wed.

Status of the WCTE

- The WCTE collaboration was formed after a meeting at CERN in July 2019: https://indico.cern.ch/e/814739
- Proposal for the WCTE was prepared and submitted to the CERN SPSC in March 2020: **CERN-SPSC-2020-005 ; SPSC-P-365**
 - >100 researchers signed proposal
 - Working with reviewers towards approval
- In this proposal, we propose operating in two phases: pure water and Gd loaded water
 - We suggest that and additional phase with WbLS may be proposed in the future
- We aim for the start of operation of the experiment in 2023
 - WCTE steering committee formed in August 2020
 - Steering committee is working to develop detailed schedule and help/organize funding requests
 - There are still many areas where contributions can be made

This Workshop

- This workshop provides an opportunity for:
 - Collaborators/groups focussing on WCTE to share the status of the project
 - Potential new collaborators to learn about the project and share their interests
 - Existing collaborators to see the status of the project and areas where efforts need to be directed
- We have left plenty of time in the agenda for discussion
 - Encourage attendees to ask questions and share interests/expertise
 - There is also a slack channel for discussion which can be joined at: https://join.slack.com/t/ watercherenko-afv1279/shared_invite/zt-j9w16avk-XwUBgitkLfPqYzLYFPDdjA

Workshop Agenda - Monday

MONDAY, 23 NOVEMBER

14:30 → 15:00	Introduction Session			
	14:30	WCTE Introduction and Status Speaker: Dr Mark Hartz (TRIUMF & Kavli IPMU, University of Tokyo)		
15:00 → 16:15	Physics a	ics and Analysis (Chair: M. Scott)		
	15:00	WCTE Physics and Analysis Overview Speaker: Masaki Ishitsuka (Tokyo University of Science)		
	15:25	Cherenkov Angle Study Speaker: Mo Jia (Stonybrook University)		
	15:40	WCTE Measurements for T2K & Super-K Speaker: Dr Mark Hartz (TRIUMF & Kavli IPMU, University of Tokyo)		
16:15 → 17:30	Beam Line	e (Chair: A. Konaka)		
	16:15	Beam Design and Simulation Speaker: Dr Matej Pavin (TRIUMF)		
	16:45	Spectrometer and TOF Hardware Speaker: Prof. Pradeep Sarin (IIT Bombay)		

Workshop Agenda - Tuesday

TUESDAY, 24 NOVEMBER

Workshop Agenda - Wednesday

	-
	<i>Q</i> .
() 30m	2-
🕓 25m	<i>Q</i> •
	<i>Q</i> •
(§ 20m	2.
🕓 30m	2-
	<i>Q</i> •
() 20m	<u>2</u> .

Thank you

WCTE Water System - Gd Loading Phase

- Will add ~100 kg of $Gd_2(SO_4)_3$ to the water
 - During loading phase, mixing tank is added to dissolve Gd₂(SO₄)₃
- Ion exchange resin in water system will be removed or replaced with special resin
- Resin is used to remove Gd₂(SO₄)₃ when Gd loading phase is complete
 - Gd concentration measurement system will be used to monitor Gd level

~5 ton mixing tank

WCTE Motivation

Water Cherenkov Detector (IWCD) for Hyper-K

- Kilo-ton scale water Cherenkov detector
- Requires 1% level calibration
- Implement new technologies, such as the multi-PMT photosensors

• Original motivation for water Cherenkov test experiment driven by planned Intermediate

Particle Fluxes and PID for Tertiary beam

- Per 50 MeV/c bin, producing ~1e-4 particles of interest per protons on target
 - Per-spill POT can be as high as 5e6
- Significant pion fluxes down to ~200 MeV/c can be achieved
- Proton fluxes down to ~300 MeV/c
- Segmented TOF detector serves two purposes
 - Particle identification
 - Measures kinks in tracks from spectrometer to identify pion decay-in-flight

Displacement at TOF due to decay-in-flight

