Water-based Liquid Scintillator in WCTE

Mike Wilking Stony Brook University WCTE Workshop November 25th, 2020

Water-based Liquid Scintillator (WbLß

• Target medium can be adjusted to physics goals

• Different physics accessible in different phases of the experiment

Cherenkov / Scintillation Separation

 Several tools are available to separate Cherenkov and scintillation photons:

Large Area Picosecond Photon Detectors

- Area: 20-by-20 cm²
- Amplification of p.e. by two MCP layers
- Flat geometry: ultrafast timing ~65ps
- Strip readout: spatial resolution ~1cm
- Commercial production by Incom, Ltd.

Proposed Theia Experiments

Detector

• The Theia white paper consider

Either detector would exploit the huge investment in LBNF made by the US physics community

Designed to fit in the 4th DUNE cavern (i.e. the "Module of Opportunity")

- The detector is envisioned to run in 3 phases:
 - Phase 1: Long-baseline neutrinos (LBNF) 1-10% WbLS
 - Phase 2: Low-energy neutrinos Increased WbLS and photocoverage
 - Phase 3: Multi-ton Ονββ
 Several kton balloon of isotope+LAB+PPO

Physics Goals

- Long-baseline: δ_{CP}, θ₂₃, Δm₃₂²
- Proton decay $(K^+v, 3v)$
- Supernova (SN) neutrinos
- Diffuse SN background
- Solar neutrinos
- Geoneutrinos
- 0vββ search

7 HE 14:25

Sensitivity

- Sensitivities produced with the same GLoBES framework used for the DUNE CDR analysis
 - Systematic assumptions are also consistent with the CDR (2% signal, 5% background, uncorrelated among all samples)
 - Theia disappearance samples are not included here (impact is minimal)
- Both the CP and mass hierarchy sensitivity are similar for a 10 kt LAr module, and a 17 kt Theia module

Challenges for WbLS in WCTE

• Materials compatibility

- Some materials used in Water Cherenkov detectors interact poorly with WbLS
- Careful selection of materials is needed for anything that will come in contact with WbLS (potentially: mPMTs, cables, support structure, calibration systems, ...)

• Water system

- A complete WbLS filtration and circulation system does not yet exist
 - Water system R&D is ongoing at a few locations
- We are currently exploring whether a partial system could be sufficient at the 25 ton scale

WbLS Materials

- Several materials are known to work well with WbLS
 - Stainless steel (e.g. alloys 316, 304)
 - PTFE (teflon; polytetrafluoroethylene)
 - PFA: Perfluoroalkoxy alkane
 - FEP: Fluorinated ethylene propylene
 - Arkema's Kynar PVDF (polyvinylidene fluoride)
 - PP: polypropylene
 - Acrylic
 - PE: Polyethylene (but only without UV-protection additives, which cause leaching)
- Additional materials compatibility testing capacity is available at BNL (and perhaps UC Davis)

Hamamatsu WbLS PMT

- Butyl rubber adhesive dissolves in WbLS
- Several "fluorine resins" were tested
 - F113 showed no signs of transmittance degradation in a 1 month WbLS soak test
- No resin failures after a variety of soak tests, temperature variations (55°C to -20°C), and pressure tests up to 0.6 MPa gauge pressure
- A new iteration is under development (Hamamatsu claims 2-3 months from now)

L. Pickard, https://indico.bnl.gov/event/6963/contributions/32648/ attachments/31549/49833/WbLS_Compatibility_THEIA.pdf

Urethane Resin is Filled Inside

(Fluorine Resin)

"Complete" Water System

- Water system under development for NEO
 - Nanofiltration stage (known technology; small scale systems exist)
 - Scintillator purification stage (still at R&D stage)
- Based on existing prototype systems, need to determine which components would be necessary for a many-week run in WCTE

BNL 1 Ton

- Water fill/recirculation system: RO, DI, and degassing at 1 L/minute
- These were bypassed during WbLS introduction
 - (a special degassed for WbLS was used, but not used; 12% reduction in WbLS light yield in bench test)
- After WbLS was introduced, recirculation system was stopped, and monitoring PMTs indicated stable optical properties for ~1 month
 - Future plans for improved monitoring of WbLS mixing and recirculation rate studies

ANNIE

- Phase I (2016-2017): deployed a 50 cm x 50 cm Gd-doped LS volume to measure neutron backgrounds at several locations
- Phase II (2019-??): Gddoped water with LAPPDs
- Phase III (future): WbLS phase with more LAPPDs

Phase I: Small GdLS Volume

Phase II: Full Gd Loading

Possible Collaborative Efforts

- Several German groups are seeking funds for a smaller-scale WbLS test in a CERN test beam (Dresden, Hamburg, Jülich, Mainz, Tübingen)
- $1.5 \ge 1.5 \ge 2 \le m^3$ box
- Acrylic wall separating WbLS from photosensors
 - LAPPDs, dichroicons, 2" PMTs
 - 8" Borexino PMTs (~1.2 ns) dipped in WbLS from above
- Planning for 0.3 to 3 GeV/c
- Significant potential for collaboration (results needed by mid-2024)

WCTE Containment Vessel Options

- If materials compatibility is too difficult, a separate volume of WbLS could be deployed
- A smaller volume of known thickness in the upstream portion of the tank
 - Can study Cher/scint separation, scint production, & reconstruction performance
 - Less invasive; water system requirements reduced
- A tube along the beam line
 - Allows for more detailed study of light produced by stopping particles
- A larger volume (cylindrical or spherical) which fills the bulk of the tank
 - More wholistic study of particle scatters and late time activity (e.g. Michels)
 - More extensive modifications; more expensive

WCTE Containment Vessel Options

- If materials compatibility is too difficult, a separate volume of WbLS could be deployed
- A smaller volume of known thickness in the upstream portion of the tank
 - Can study Cher/scint separation, scint production, & reconstruction performance
 - Less invasive; water system requirements reduced
- A tube along the beam line
 - Allows for more detailed study of light produced by stopping particles
- A larger volume (cylindrical or spherical) which fills the bulk of the tank
 - More wholistic study of particle scatters and late time activity (e.g. Michels)
 - More extensive modifications; more expensive

Dichroicon: Cher/Scint Separation

- Goal: separately detect light below and above ~500 nm
 - < 500 nm: Scint + Cher light (charge measurement)
 - > 500 nm Cher-only light (direction measurement)

- Side benefit: red light is faster, with less scattering and dispersion
- Blue light passes through the cone to a standard reflector and is measured by a separate photodetector

Dichroicon Performance

Summary

- WbLS technology is still at an early stage, and effort is ongoing to understand large-scale applications
 - WbLS filtration/recirculation system R&D is ongoing
 - Various scaled-down options are being explored for WCTE based on initial results from test setups at UC Davis and BNL
- If WbLS is to be a possibility for WCTE, we need to consider capability of materials in mPMTs, cables, support structure, etc.
 - Otherwise, a separate contained volume of WbLS would be required
- UPenn has interest in deploying some dichroicons for Cherenkov/scintillation separation studies
- German groups are applying for funding for WbLS studies in a CERN test beam, and collaboration may be possible