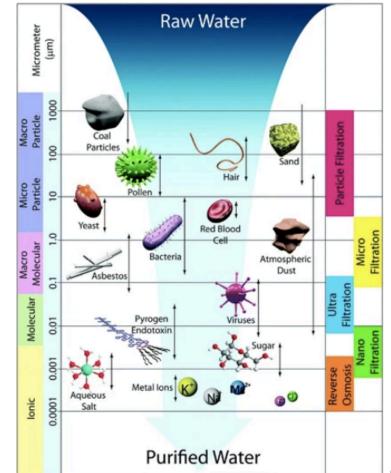
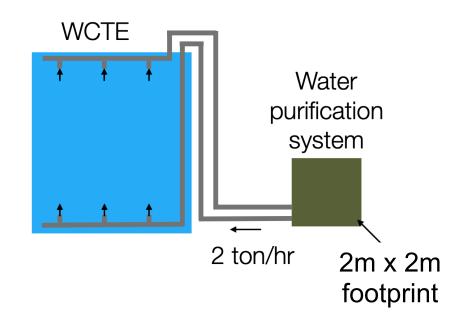


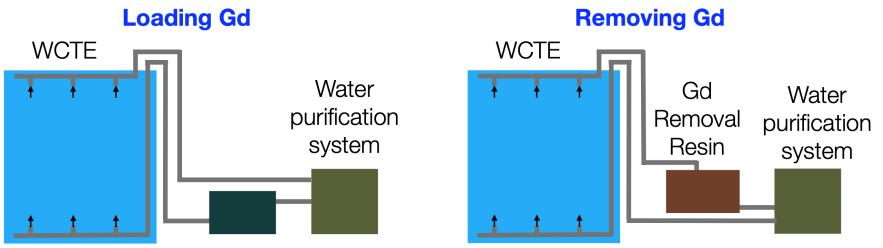
Cherenkov light detection


- Cherenkov light yield ~ $1/\lambda^2$
 - More Cherenkov light at shorter wave length
- Light detection efficiency
 - Quantum efficiency of PMT peaks at ~400nm
- Detected Cherenkov light is 320-500nm
 - Peak is 350-400nm
 - some suppression of light below 400nm with Gd

- Attenuation at $\lambda > 450$ nm due to
 - Water absorption: $\lambda_{att} > 50m$
 - negligible for WCTE with 4m diam.
- Attenuation at $\lambda < 400$ nm due to
 - Rayleigh scattering: $\lambda_{att} > 50m$
 - negligible for WCTE with 4m diam.
 - Absorption by dissolved impurities
 - · Removed by molecular and ion filters
 - Reverse Osmosis, Ion exchanger, degasser
 - Gd ions need to be kept for Gd run
- Mie scattering
 - bacteria, dust, and other particles
 - removed by the water filtering (Microfilter)
 - negligible for SK but could be the main cause in WCTE

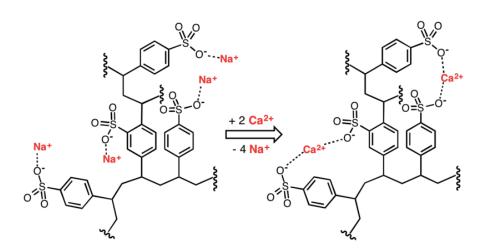


SuperK full water purification system


- Activated carbon filter
 - adsorption of chlorin, organic material, etc.
- Membrane particle filter
 - Microfilter(MF), Ultrafilter(UF), Nanofilter(NF)
 - different pore sizes
- Reverse Osmosis (RO)
 - filter metal ions
- Ion exchanger resin
 - cation (+) and anion (-) exchange
- Membrane degasser
 - remove dissolved CO₂ (food for bacteria)
- UV sterilizer and Chiller
 - suppress the growth of bacteria

- Initially use deionized water
 - pure water with ions removed
 - potentially available at CERN
 - used for magnet cooling
- Water purification system
 - Micro/nano and carbon filters
 - remove Mie scatt. particles
 - UV sterilizer, chiller, degasser
 - suppress bacteria growth
 - Ion exchanger and RO?
 - interfere with Gd loading
 - either not using them or use special resin
 - see the later discussion

Gd loading and removal

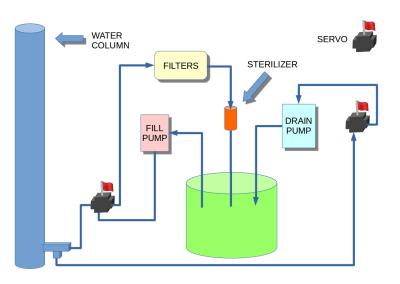


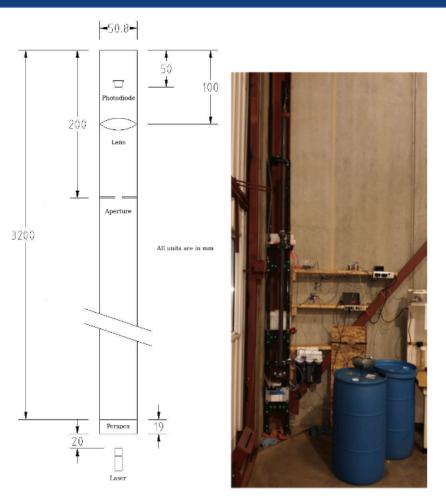
~5 ton mixing tank

- Gd₂(SO₄)₃ mixed in the mixing tank
 - WCTE: 0.2% x 50ton x \$70/kg = \$7k
- Gd removal by cation resin in the water line
 - more expensive than Gd₂(SO₄)₃ itself

Gd removal by ion exchanger resin

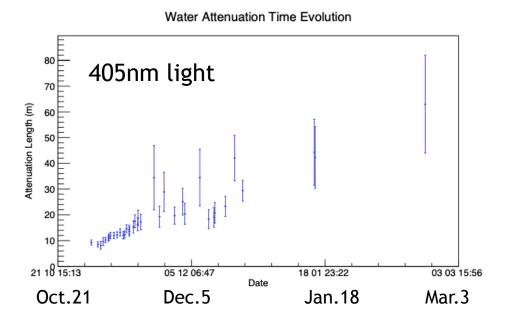
- Water softening cation resin
 - simple & effective emergency Gd remover
 - SK (50kton water), WCTE (50ton)
- For circulation, Gd need to be maintained
 - special ion exchanger resin (expensive)
 - Or we may do without ion exchanger





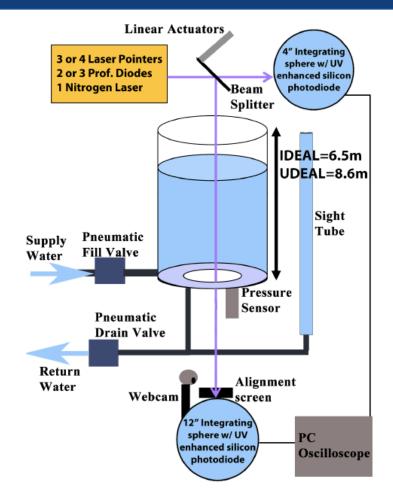
Simple water purification for CHIPS: arXiv:1610.06957

- Water filtering on pit water only with
 - $1\mu m$ carbon filter
 - 0.2µm microfilter
 - UV sterilizer
 - no filtering on metal ions at all
- Water column for attenuation length study



Simple water purification for CHIPS: arXiv:1610.06957

Raw pit water circulated only with carbon filter, microfilter, and UV


In WCTE, we will start by ultra-pure water with ions and gas removed

- Attenuation length reach 50m @ 405nm
 - 4 months after starting from raw pit water
 - even with fully dissolved ions and gas
- Comments by Nakajima-san
 - 50m exceeds the requirement (λ_{att} >20m)
 - resolution is limited by 3m column: error is large but still very promising
 - Degradation is expected below λ =400nm
 - important to study in the Cherenkov peak region of 350-400nm
 - Study was done in an empty water tank
 - need to study with detector components
 - emanation? corrosion by metal ions?
 - Systematic R&D study is needed (no data!)
 - Light attenuation study with ions in presence

Water transmission monitor: UDEAL/IDEAL (UC Irvine group)

- UDEAL water transmission detector
 - laser light is injected from the top of the water colum
 - integrating sphere with photodiode at the bottom to measure the light
 - Changing the water hight in the column to change the light path length in the water
- Similar system is needed for the WCTE water system
 - excellent graduate students project
 - systematic study of water quality
 - low cost detector to build
 - require careful 1% level measurement
 - physics simulation studies

- Water purification is needed for good light transmission in water Cherenkov
 - Active carbon filter adsorption for CI and organic materials
 - Particle filters (MF, UF, NF) for small particles and molecules
 - Reverse Osmosis (RO) and Ion exchange resin catch ions
 - Membrane degasser removes dissolved gas, in particular CO₂ (food for bacteria)
 - UV lamp will suppress bacteria growth
- Simple filters (carbon, MF) and UV lamp may be enough for WCTE water circulation
 - The size of WCTE is small and may not require ion removal during the circulation
 - Start with ultra-pure (deionized) water at CERN
 - If this works, it is simple, economical and works with Gd loaded water
- Encouraging result from CHIPS study showing that simple filters worked @ 405nm
 - systematic R&D required to study water transparency with dissolved ions
 - SK (Irvine) UDEAL system provides good example for the transparency measurement
 - WCTE will be an excellent platform to test long term stability with real detector
- Looking for a group who will lead this important and important project