Incoherent effects from e-cloud with SixTrackLib

Konstantinos Paraschou^{1,2}, Giovanni ladarola¹

¹CERN, Switzerland ²Aristotle University of Thessaloniki, Greece

Acknowledgements: H. Bartosik, R. De Maria, L. Giacomel, Y. Papaphilippou, L. Sabato, M. Schwinzerl, G. Skripka

> 185th HiLumi WP2 Meeting CERN, Tuesday, 24th November 2020

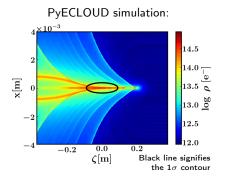
Overview

Recap

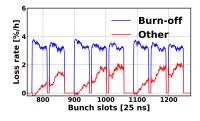
- Motivation
- Electron cloud kick
- Tricubic interpolation
- Macroparticle noise
- Interpolation artifacts
- 2 Configuration of simulations
 - SixTrackLib implementation
 - Tracking sequence configuration
 - Collimators
- 3 Tests
 - RF-Multipole test
 - PyHEADTAIL footprint test
- Tracking Results
 - Frequency Map Analysis
 - Dynamic Aperture
 - Long-term tracking (losses)

Motivation

Electrons trapped in beam chamber (Electron Cloud) can introduce non-linearities in single-particle beam dynamics.



LHC experimental observations:



Bunch-by-bunch pattern¹ on (slow) losses resembles typical E-cloud buildup behaviour.

¹More details in G. ladarola, LBOC meeting 112

Electron cloud kick

It is possible to prove^{2,3} that e-cloud kick can be written as the gradient of a scalar potential:

$$x, y, \tau \mapsto x, y, \tau$$

$$p_{x} \mapsto p_{x} - \frac{qL}{\beta_{0}P_{0}c} \frac{\partial \phi}{\partial x}(x, y, \tau)$$

$$p_{y} \mapsto p_{y} - \frac{qL}{\beta_{0}P_{0}c} \frac{\partial \phi}{\partial y}(x, y, \tau)$$

$$p_{\tau} \mapsto p_{\tau} - \frac{qL}{\beta_{0}P_{0}c} \frac{\partial \phi}{\partial \tau}(x, y, \tau)$$

This map can be generated from the Hamiltonian:

$$H(x, y, \tau; s) = \frac{qL}{\beta_0 P_0 c} \phi(x, y, \tau) \,\delta(s)$$

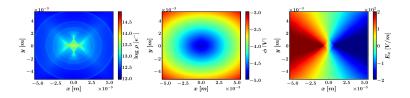
²Under usual thin-lens approximations.

³see G. ladarola, CERN-ACC-NOTE-2019-0033.

The electron cloud simulation

$$H(x, y, \tau; s) = \frac{qL}{\beta_0 P_0 c} \phi(x, y, \tau) \delta(s)$$

• The potential ϕ can be calculated by PyECLOUD simulations over a discrete grid.



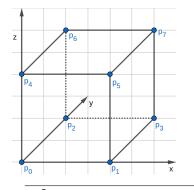
- $\bullet\,$ To study slow effects, we should interpolate ϕ in a way that kicks are symplectic.
- Linear interpolation would not suffice⁴

⁴More details in K. Paraschou, Electron Cloud Meeting #67

How to interpolate

Objective

Given a regular 3D grid of any function $f^{i,j,k}$, we need to interpolate **locally** in a way that $\left\{f, \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}, \frac{\partial^2 f}{\partial x \partial y}, \frac{\partial^2 f}{\partial x \partial z}, \frac{\partial^2 f}{\partial y \partial z}\right\}$ are continuous globally.



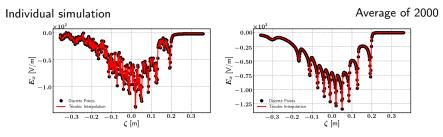
 Lekien and Marsden⁵ proved that it is possible to meet this condition by using a tricubic interpolation scheme:

$$f(x, y, z) = \sum_{i=0} \sum_{j=0} \sum_{k=0} a_{ijk} x^i y^j z^k$$

• The 64 coefficients *a_{ijk}* change from cell to cell but required quantities stay continuous across cells.

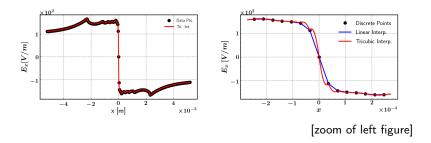
⁵Lekien, F & J. E., Marsden. (2005). Tricubic Interpolation in Three Dimensions. International Journal for Numerical Methods in Engineering. 63. 10.1002/nme.1296.

Interpolation of a PyECLOUD simulation



- Simulation suffers from macroparticle noise.
- Solution: Reduce noise by averaging many simulations.
 - Averaging 2000 simulations reveals clear structure.

Interpolation artifacts



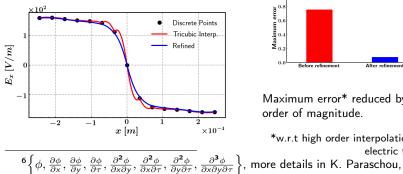
• Close look at interpolation reveals irregularities.

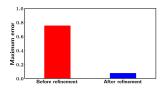
- Tricubic interpolation is symplectic but not accurate enough.
- Linear interpolation is more accurate (but not symplectic).
- Investigation with analytical potential pointed to the evaluation of derivatives (Finite Differences) as the problem.

Interpolation artifacts

To solve:

- Resolve Poisson's equation on an auxilliary finer grid
- to get better approximation of derivatives
- but keep information⁶ only on original grid. (to limit memory consumption)





Maximum error* reduced by an order of magnitude.

*w.r.t high order interpolation of electric fields

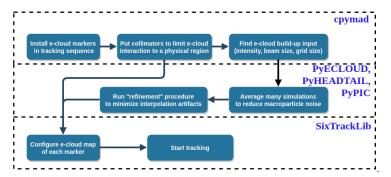
Electron Cloud Meeting #72 and K. Paraschou, 165th HL-LHC WP2 Meeting

1 Reca

- Motivation
- Electron cloud kick
- Tricubic interpolation
- Macroparticle noise
- Interpolation artifacts
- 2 Configuration of simulations
 - SixTrackLib implementation
 - Tracking sequence configuration
 - Collimators
- 3 Tests
 - RF-Multipole test
 - PyHEADTAIL footprint test
- Tracking Results
 - Frequency Map Analysis
 - Dynamic Aperture
 - Long-term tracking (losses)

Overview

To set up a realistic simulation:



$$\frac{\partial \phi}{\partial \tilde{x}}(\tilde{x}, \tilde{y}, \tilde{\tau}) = \sum_{i=1}^{3} \sum_{j=0}^{3} \sum_{k=0}^{3} i a_{ijk} \tilde{x}^{i-1} \tilde{y}^{j} \tilde{\tau}^{k}, \qquad \mathbf{a} = \mathbf{B}^{-1} \mathbf{b}$$

We chose to implement the e-cloud map in SixTrackLib to take advantage of GPU tracking. The algorithm boils down to:

Store in memory the discrete potential φ
 (example size: 500 × 500 × 500 × 8 × 8 bytes = 8 GB).

$$\frac{\partial \phi}{\partial \tilde{x}}(\tilde{x}, \tilde{y}, \tilde{\tau}) = \sum_{i=1}^{3} \sum_{j=0}^{3} \sum_{k=0}^{3} i a_{ijk} \tilde{x}^{i-1} \tilde{y}^{j} \tilde{\tau}^{k}, \qquad \mathbf{a} = \mathbf{B}^{-1} \mathbf{b}$$

- Store in memory the discrete potential φ (example size: 500 × 500 × 500 × 8 × 8 bytes = 8 GB).
- **2** Use particle's x, y, τ to find cell $(\tilde{x} = \frac{x-x_0}{dx})$.

$$\frac{\partial \phi}{\partial \tilde{x}}(\tilde{x}, \tilde{y}, \tilde{\tau}) = \sum_{i=1}^{3} \sum_{j=0}^{3} \sum_{k=0}^{3} i a_{ijk} \tilde{x}^{i-1} \tilde{y}^{j} \tilde{\tau}^{k}, \qquad \mathbf{a} = \mathbf{B}^{-1} \mathbf{b}$$

- Store in memory the discrete potential φ
 (example size: 500 × 500 × 500 × 8 × 8 bytes = 8 GB).
- **2** Use particle's x, y, τ to find cell $(\tilde{x} = \frac{x-x_0}{dx})$.
- From cell's 8 corners p_i , assemble vector $\mathbf{b} = \left(\phi|_{p_i}, \frac{\partial \phi}{\partial x}|_{p_i}, \frac{\partial \phi}{\partial y}|_{p_i}, \frac{\partial \phi}{\partial \tau}|_{p_i}, \frac{\partial^2 \phi}{\partial x \partial y}|_{p_i}, \frac{\partial^2 \phi}{\partial x \partial y}|_{p_i}, \frac{\partial^2 \phi}{\partial y \partial \tau}|_{p_i}, \frac{\partial^3 \phi}{\partial x \partial y \partial \tau}|_{p_i}, \dots\right)$

$$\frac{\partial \phi}{\partial \tilde{x}}(\tilde{x}, \tilde{y}, \tilde{\tau}) = \sum_{i=1}^{3} \sum_{j=0}^{3} \sum_{k=0}^{3} i a_{ijk} \tilde{x}^{i-1} \tilde{y}^{j} \tilde{\tau}^{k}, \qquad \mathbf{a} = \mathbf{B}^{-1} \mathbf{b}$$

- Store in memory the discrete potential φ (example size: 500 × 500 × 500 × 8 × 8 bytes = 8 GB).
- **2** Use particle's x, y, τ to find cell $(\tilde{x} = \frac{x-x_0}{dx})$.
- From cell's 8 corners p_i , assemble vector $\mathbf{b} = \left(\phi|_{p_i}, \frac{\partial \phi}{\partial x}|_{p_i}, \frac{\partial \phi}{\partial y}|_{p_i}, \frac{\partial \phi}{\partial \tau}|_{p_i}, \frac{\partial^2 \phi}{\partial x \partial y}|_{p_i}, \frac{\partial^2 \phi}{\partial x \partial y}|_{p_i}, \frac{\partial^2 \phi}{\partial y \partial \tau}|_{p_i}, \frac{\partial^3 \phi}{\partial x \partial y \partial \tau}|_{p_i}, \dots\right)$
- Perform matrix multiplication $a = B^{-1} b$ to find a_{ijk} .

$$\frac{\partial \phi}{\partial \tilde{x}}(\tilde{x}, \tilde{y}, \tilde{\tau}) = \sum_{i=1}^{3} \sum_{j=0}^{3} \sum_{k=0}^{3} i a_{ijk} \tilde{x}^{i-1} \tilde{y}^{j} \tilde{\tau}^{k}, \qquad \mathbf{a} = \mathbf{B}^{-1} \mathbf{b}$$

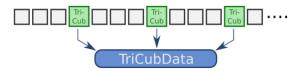
- Store in memory the discrete potential φ (example size: 500 × 500 × 500 × 8 × 8 bytes = 8 GB).
- **2** Use particle's x, y, τ to find cell $(\tilde{x} = \frac{x-x_0}{dx})$.
- From cell's 8 corners p_i , assemble vector $\mathbf{b} = \left(\phi|_{p_i}, \frac{\partial \phi}{\partial x}|_{p_i}, \frac{\partial \phi}{\partial y}|_{p_i}, \frac{\partial \phi}{\partial \tau}|_{p_i}, \frac{\partial^2 \phi}{\partial x \partial y}|_{p_i}, \frac{\partial^2 \phi}{\partial x \partial y}|_{p_i}, \frac{\partial^2 \phi}{\partial y \partial \tau}|_{p_i}, \frac{\partial^3 \phi}{\partial x \partial y \partial \tau}|_{p_i}, \dots\right)$
- Perform matrix multiplication $a = B^{-1} b$ to find a_{ijk} .
- Second Second

$$\frac{\partial \phi}{\partial \tilde{x}}(\tilde{x}, \tilde{y}, \tilde{\tau}) = \sum_{i=1}^{3} \sum_{j=0}^{3} \sum_{k=0}^{3} i a_{ijk} \tilde{x}^{i-1} \tilde{y}^{j} \tilde{\tau}^{k}, \qquad \mathbf{a} = \mathbf{B}^{-1} \mathbf{b}$$

- Store in memory the discrete potential φ (example size: 500 × 500 × 500 × 8 × 8 bytes = 8 GB).
- **2** Use particle's x, y, τ to find cell $(\tilde{x} = \frac{x-x_0}{dx})$.
- From cell's 8 corners p_i , assemble vector $\mathbf{b} = \left(\phi|_{p_i}, \frac{\partial \phi}{\partial x}|_{p_i}, \frac{\partial \phi}{\partial y}|_{p_i}, \frac{\partial \phi}{\partial \tau}|_{p_i}, \frac{\partial^2 \phi}{\partial x \partial y}|_{p_i}, \frac{\partial^2 \phi}{\partial x \partial y}|_{p_i}, \frac{\partial^2 \phi}{\partial y \partial \tau}|_{p_i}, \frac{\partial^3 \phi}{\partial x \partial y \partial \tau}|_{p_i}, \dots\right)$
- Perform matrix multiplication $a = B^{-1} b$ to find a_{ijk} .
- Several triple sum and apply kicks.

- Store in memory the discrete potential φ

 (example size: 500 × 500 × 500 × 8 × 8 bytes = 8 GB).
- If each map needs multiple GBs of memory, it is prohibitive to include more interactions.
- Thanks to SixTrackLib's flexibility and the work of Martin Schwinzerl⁷, each map(TriCub) can point to the same stored e-cloud potential(TriCubData).
- Possible to include as many e-cloud maps as we want.



⁷More details in M. Schwinzerl, BE Seminar on SixTrackLib

9 Perform matrix multiplication $\mathbf{a} = \mathbf{B}^{-1} \mathbf{b}$ to find a_{ijk} .

- B⁻¹ is a constant, integer, sparse matrix of size 64 × 64 and a, b are vectors of size 64.
- Typical algorithm requires 64 × 64 = 4096 multiplications and additions, and ~ 32 KB memory.
- In GPUs, each "parallel processor" has its own local memory. If it runs out, it will occupy the memory of other processors.
- Very important to minimize memory consumption!

```
1 for( i = 0; i < 64; i++ )
2 for( j = 0; j < 64; j++ )
3 a[i] += B[i][j] * b[j];</pre>
```

• Perform matrix multiplication $\mathbf{a} = \mathbf{B}^{-1} \mathbf{b}$ to find a_{ijk} .

Very important to minimize memory consumption!

- Inspection of matrix B^{-1} reveals that only the numbers $\{1, 2, 3, 4, 6, 8, 9, 12, 18, 27\}$ appear.
- Developed code to write code that computes this specific matrix multiplication explicitly.
- → reduces local memory (~ 32 KB to 1 KB),
 → reduces number of multiplications and additions (4096 to 1000).

1	for(i =	0;	i <	64;	i++)
2	for(j =	0;	j <	64;	j++)
3	a	a[i]	+=	B[i]	[[j]	* b[j];

	¥
42	coefs[0] = b[0];
43	<pre>coefs[2] = -(tri_consts[1] * b[0]);</pre>
44	<pre>coefs[3] = tri_consts[0] * b[0];</pre>
45	coefs[8] = -(tri_consts[1] * b[0]);
46	<pre>coefs[10] = tri_consts[5] * b[0];</pre>
47	coefs[11] = -(tri_consts[3] * b[0]);
48	<pre>coefs[12] = tri_consts[0] * b[0];</pre>
49	<pre>coefs[14] = -(tri_consts[3] * b[0]);</pre>
50	<pre>coefs[15] = tri_consts[2] * b[0];</pre>
51	<pre>coefs[32] = -(tri_consts[1] * b[0]);</pre>
52	<pre>coefs[34] = tri_consts[5] * b[0];</pre>
53	<pre>coefs[35] = -(tri_consts[3] * b[0]);</pre>
54	<pre>coefs[40] = tri_consts[5] * b[0];</pre>
55	<pre>coefs[42] = -(tri_consts[8] * b[0]);</pre>
56	<pre>coefs[43] = tri_consts[7] * b[0];</pre>

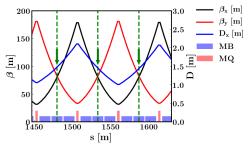
```
coefs[58] += tri_consts[0] * b[62];
         coefs[59] -= b[62];
         coefs[61] += b[62]:
         coefs[62] -= tri consts[0] * b[62]:
         coefs[63] += b[62]:
         coefs[42] -= b[63]:
1035
         coefs[43] += b[63]:
1036
         coefs[46] += b[63]:
1037
1038
         coefs[58] += b[63]:
1039
1040
1041
         coefs[63] += b[63];
```

E-cloud setup

E-cloud exists across the full length of the LHC beam pipe. Most significant contributors:

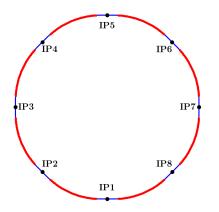
- E-cloud in arc dipoles (66%)
- E-cloud in quadrupoles (7%)

Place one interaction for each three dipoles.



- E-cloud buildup depends mildly on beam size.
- Beta functions and dispersion are the same.
- Effect due to change of beta functions (and dispersion) is ignored.

E-cloud setup

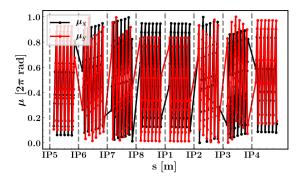


Install one e-cloud per half-cell \rightarrow 46 interactions per arc \rightarrow 368 interactions.

Check in each interaction's location:

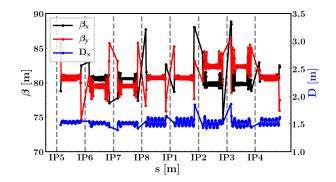
- phase advances $\mu_{x,y}$,
- beta functions $\beta_{x,y}$,
- horizontal dispersion D_x ,
- beam sizes $\sigma_{x,y}$.

E-cloud setup - phase advances



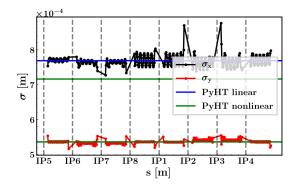
- Phase advances are distributed.
- Artificial resonance excitation is minimized.

E-cloud setup - $\beta_{x,y}, D_x$



• Beta functions and dispersion show only a minor beating.

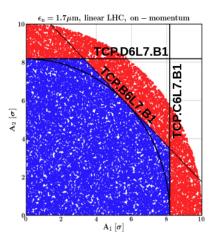
E-cloud setup - $\sigma_{x,y}$



- MAD-X slightly overestimates beam size⁸ (7%) through the assumption of linear RF focusing.
- PyHEADTAIL used to check effect of non-linear RF focusing, small difference.

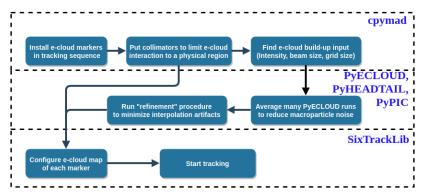
⁸Beam size defined as the standard deviation of a Gaussian distribution.

Collimators



- E-cloud does not exist outside the beam chamber.
- In fact, not enough memory to store fields across the full beam chamber.
- We use the three TCPs in IR7 to limit particles' oscillation in a realistic, physical region.

Overview



During configuration of the e-cloud maps:

- **(**) closed orbits (x, y, τ) are shifted to the center of the e-cloud,
- 2 dipolar kicks (p_x, p_y, p_τ) are subtracted.

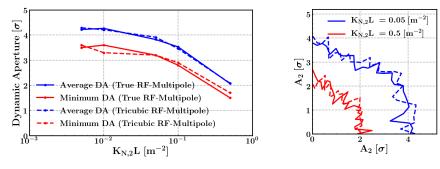
1 Reca

- Motivation
- Electron cloud kick
- Tricubic interpolation
- Macroparticle noise
- Interpolation artifacts
- 2 Configuration of simulations
 - SixTrackLib implementation
 - Tracking sequence configuration
 - Collimators
- 3 Tests
 - RF-Multipole test
 - PyHEADTAIL footprint test
- 4 Tracking Results
 - Frequency Map Analysis
 - Dynamic Aperture
 - Long-term tracking (losses)

RF-Multipole test

To test the tricubic map,

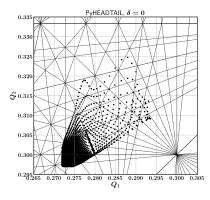
- We artificially introduced an RF-Multipole (sextupole) in the optics model of the LHC.
- Using tricubic interpolation, we replicated the map of the RF-Multipole.
- Somparison of dynamic aperture between real RF-Multipole map and replicated one.

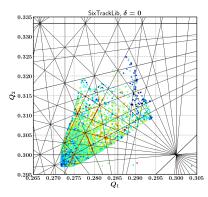


PyHEADTAIL footprint test

To test the tricubic map,

- Use same map (e-cloud without magnetic field) in PyHEADTAIL (12 interactions, linear tracking) and SixTrackLib (368 interactions and non-linear tracking).
- Footprints are the same (tune shift depends only beta functions)





1 Reca

- Motivation
- IVIOTIVATION
- Electron cloud kick
- Tricubic interpolation
- Macroparticle noise
- Interpolation artifacts
- 2 Configuration of simulations
 - SixTrackLib implementation
 - Tracking sequence configuration
 - Collimators
- 3 Tests
 - RF-Multipole test
 - PyHEADTAIL footprint test

Tracking Results

- Frequency Map Analysis
- Dynamic Aperture
- Long-term tracking (losses)

Resources

After all the necessary configuration, we can use GPUs to track:

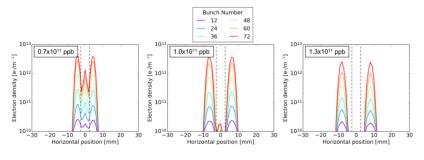
- \sim **20 Nvidia Tesla V100**⁷ GPUs available in HTCondor at CERN.
- 4 Nvidia Tesla V100 GPUs in the CNAF cluster in Bologna (through HL-LHC collaboration).
- 4 Nvidia Titan V GPUs of LIU and ABP (50/50) for the purpose of developing and testing GPU-based simulation codes (Many thanks to H. Bartosik)

Three types of simulations:

- Frequency Map Analysis (20k turns) -> \sim 30 mins
- 2 Dynamic Aperture (1M turns) -> \sim 8 hours
- 3 Long-term tracking, losses (20M turns) -> \sim 4 days

⁷https://www.nvidia.com/en-us/data-center/tesla-v100/

E-cloud density



[A. Romano, PRAB 21, 061002 (2018)]

E-cloud build-up in dipolar fields has the characteristic of forming two stripes of electrons in the beam chamber.

- Higher intensities make stripes move to larger distances.
- Lower intensities bring stripes closer to the beam's center.
- At lower intensities a stripe of electron forms in the center.

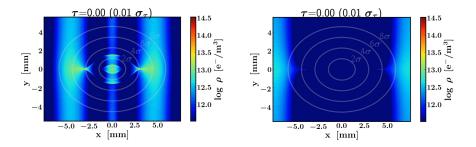
Simulations

Comparison between:

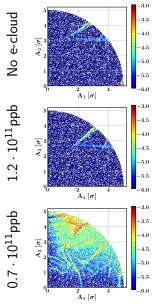
- No e-cloud, $I_{MO} = 40 A$
- Arc dipoles' e-cloud, SEY = 1.35, $0.7 \cdot 10^{11} ppb$, $I_{MO} = 40 A$
- Arc dipoles' e-cloud, SEY = 1.35, $1.2 \cdot 10^{11} ppb$, $I_{MO} = 40 A$

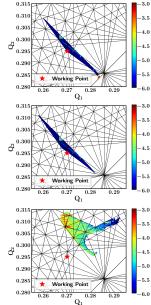
 $0.7 \cdot 10^{11} ppb$

 $1.2\cdot10^{11} ppb$



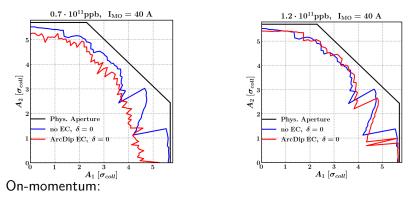
Frequency Map Analyses



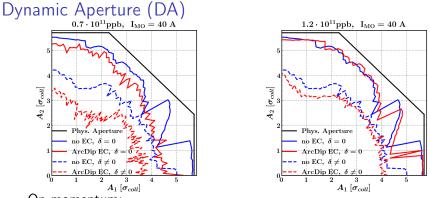


^{A55} No central stripe \rightarrow Tune-shift Central stripe \rightarrow non-linear detuning \rightarrow resonances

Dynamic Aperture (DA)



- No central stripe $(1.2 \cdot 10^{11} \text{ppb}) \rightarrow \text{Almost no effect.}$
- Central stripe $(0.7 \cdot 10^{11} \text{ppb}) \rightarrow$ Some reduction at large horizontal amplitudes.



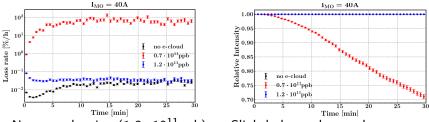
On-momentum:

- No central stripe $(1.2 \cdot 10^{11} \text{ppb}) \rightarrow \text{Almost no effect.}$
- Central stripe $(0.7 \cdot 10^{11} \text{ppb}) \rightarrow$ Some reduction at large horizontal amplitudes.

Off-momentum:

- No central stripe $(1.2\cdot 10^{11} \text{ppb})
 ightarrow$ Small reduction in DA
- Central stripe $(0.7 \cdot 10^{11} \text{ppb}) \rightarrow \text{Significant reduction.}$

Long-term tracking (losses)



No central stripe $(1.2 \cdot 10^{11} \text{ppb}) \rightarrow \text{Slightly larger losses than}$ without e-cloud

Central stripe $(0.7 \cdot 10^{11} \text{ppb}) \rightarrow \text{Very significant losses}$, e-cloud may not be representative (constant SEY = 1.35).

• These simulations were performed mostly for testing purposes to check the sanity of the simulation method.

Summary

Conclusion:

- Fully defined the procedure to simulate slow e-cloud effects.
- Implemented, optimized and tested the map in SixTrackLib. (Tests with RF-Multipole, and comparison with PyHEADTAIL)
- Performed FMA, DA and long-term losses simulations.

On-going work:

- Introduced e-clouds in arc quadrupoles (MQs).
- Better probe effect of SEY, tunes, intensity etc.
- Compare simulations with experimental data.

Summary

Conclusion:

- Fully defined the procedure to simulate slow e-cloud effects.
- Implemented, optimized and tested the map in SixTrackLib. (Tests with RF-Multipole, and comparison with PyHEADTAIL)
- Performed FMA, DA and long-term losses simulations.

On-going work:

- Introduced e-clouds in arc quadrupoles (MQs).
- Better probe effect of SEY, tunes, intensity etc.
- Compare simulations with experimental data.

Thank you for your attention! Konstantinos Paraschou