
Incoherent effects from e-cloud with
SixTrackLib

Konstantinos Paraschou1,2, Giovanni Iadarola1

1CERN, Switzerland
2Aristotle University of Thessaloniki, Greece

Acknowledgements: H. Bartosik, R. De Maria, L. Giacomel, Y. Papaphilippou,
L. Sabato, M. Schwinzerl, G. Skripka

185th HiLumi WP2 Meeting
CERN, Tuesday, 24th November 2020

1 / 35



Overview
1 Recap

Motivation
Electron cloud kick
Tricubic interpolation
Macroparticle noise
Interpolation artifacts

2 Configuration of simulations
SixTrackLib implementation
Tracking sequence configuration
Collimators

3 Tests
RF-Multipole test
PyHEADTAIL footprint test

4 Tracking Results
Frequency Map Analysis
Dynamic Aperture
Long-term tracking (losses)

2 / 35



Motivation

Electrons trapped in beam
chamber (Electron Cloud) can
introduce non-linearities in
single-particle beam dynamics.

PyECLOUD simulation:

Black line signifies
the 1σ contour

LHC experimental observations:

Bunch-by-bunch pattern1 on
(slow) losses resembles typical
E-cloud buildup behaviour.

1More details in G. Iadarola, LBOC meeting 112
3 / 35

https://indico.cern.ch/event/859514/contributions/3638377/


Electron cloud kick

It is possible to prove2,3 that e-cloud kick can be written as the
gradient of a scalar potential:

x , y , τ 7→ x , y , τ

px 7→ px −
qL

β0P0c

∂φ

∂x
(x , y , τ)

py 7→ py −
qL

β0P0c

∂φ

∂y
(x , y , τ)

pτ 7→ pτ −
qL

β0P0c

∂φ

∂τ
(x , y , τ)

This map can be generated from the Hamiltonian:

H(x , y , τ ; s) =
qL

β0P0c
φ (x , y , τ) δ(s)

2Under usual thin-lens approximations.
3see G. Iadarola, CERN-ACC-NOTE-2019-0033.

4 / 35

https://cds.cern.ch/record/2684858


The electron cloud simulation

H(x , y , τ ; s) =
qL

β0P0c
φ (x , y , τ) δ(s)

The potential φ can be calculated by PyECLOUD simulations
over a discrete grid.

To study slow effects, we should interpolate φ in a way that
kicks are symplectic.
Linear interpolation would not suffice4

4More details in K. Paraschou, Electron Cloud Meeting #67
5 / 35

https://indico.cern.ch/event/811014/contributions/3379525/


How to interpolate

Objective

Given a regular 3D grid of any function f i ,j ,k , we need to
interpolate locally in a way that

{
f , ∂f∂x ,

∂f
∂y ,

∂f
∂z ,

∂2f
∂x∂y ,

∂2f
∂x∂z ,

∂2f
∂y∂z

}
are continuous globally.

Lekien and Marsden5 proved that it
is possible to meet this condition by
using a tricubic interpolation
scheme:

f (x , y , z) =
3∑

i=0

3∑
j=0

3∑
k=0

aijkx
iy jzk

The 64 coefficients aijk change from
cell to cell but required quantities
stay continuous across cells.

5Lekien, F & J. E., Marsden. (2005). Tricubic Interpolation in Three Dimensions. International
Journal for Numerical Methods in Engineering. 63. 10.1002/nme.1296.

6 / 35



Interpolation of a PyECLOUD simulation

Individual simulation Average of 2000

Simulation suffers from macroparticle noise.
Solution: Reduce noise by averaging many simulations.

Averaging 2000 simulations reveals clear structure.

7 / 35



Interpolation artifacts

[zoom of left figure]

Close look at interpolation reveals irregularities.

Tricubic interpolation is symplectic but not accurate enough.
Linear interpolation is more accurate (but not symplectic).
Investigation with analytical potential pointed to the
evaluation of derivatives (Finite Differences) as the problem.

8 / 35



Interpolation artifacts
To solve:

Resolve Poisson’s equation on an auxilliary finer grid
to get better approximation of derivatives
but keep information6 only on original grid. (to limit memory
consumption)

Maximum error* reduced by an
order of magnitude.

*w.r.t high order interpolation of
electric fields

6
{
φ, ∂φ

∂x
, ∂φ
∂y
, ∂φ
∂τ
, ∂

2φ
∂x∂y

, ∂
2φ

∂x∂τ
, ∂

2φ
∂y∂τ

, ∂3φ
∂x∂y∂τ

}
, more details in K. Paraschou,

Electron Cloud Meeting #72 and K. Paraschou, 165th HL-LHC WP2 Meeting
9 / 35

https://indico.cern.ch/event/862798/contributions/3635364/
https://indico.cern.ch/event/862798/contributions/3635364/
https://indico.cern.ch/event/863723/contributions/3639883/


1 Recap
Motivation
Electron cloud kick
Tricubic interpolation
Macroparticle noise
Interpolation artifacts

2 Configuration of simulations
SixTrackLib implementation
Tracking sequence configuration
Collimators

3 Tests
RF-Multipole test
PyHEADTAIL footprint test

4 Tracking Results
Frequency Map Analysis
Dynamic Aperture
Long-term tracking (losses)

10 / 35



Overview

To set up a realistic simulation:

11 / 35



SixTrackLib Implementation

∂φ

∂x̃
(x̃ , ỹ , τ̃) =

3∑
i=1

3∑
j=0

3∑
k=0

iaijk x̃
i−1ỹ j τ̃k , a = B−1 b

We chose to implement the e-cloud map in SixTrackLib to take
advantage of GPU tracking. The algorithm boils down to:

1 Store in memory the discrete potential φ
(example size: 500× 500× 500× 8× 8 bytes = 8 GB).

2 Use particle’s x , y , τ to find cell (x̃ = x−x0
dx ).

3 From cell’s 8 corners pi , assemble vector
b =

(
φ|pi ,

∂φ
∂x

|pi ,
∂φ
∂y

|pi ,
∂φ
∂τ

|pi ,
∂2φ
∂x∂y

|pi ,
∂2φ
∂x∂τ

|pi ,
∂2φ
∂y∂τ

|pi ,
∂3φ

∂x∂y∂τ
|pi , . . .

)
4 Perform matrix multiplication a = B−1 b to find aijk .
5 Evaluate triple sum and apply kicks.

12 / 35



SixTrackLib Implementation

∂φ

∂x̃
(x̃ , ỹ , τ̃) =

3∑
i=1

3∑
j=0

3∑
k=0

iaijk x̃
i−1ỹ j τ̃k , a = B−1 b

We chose to implement the e-cloud map in SixTrackLib to take
advantage of GPU tracking. The algorithm boils down to:

1 Store in memory the discrete potential φ
(example size: 500× 500× 500× 8× 8 bytes = 8 GB).

2 Use particle’s x , y , τ to find cell (x̃ = x−x0
dx ).

3 From cell’s 8 corners pi , assemble vector
b =

(
φ|pi ,

∂φ
∂x

|pi ,
∂φ
∂y

|pi ,
∂φ
∂τ

|pi ,
∂2φ
∂x∂y

|pi ,
∂2φ
∂x∂τ

|pi ,
∂2φ
∂y∂τ

|pi ,
∂3φ

∂x∂y∂τ
|pi , . . .

)
4 Perform matrix multiplication a = B−1 b to find aijk .
5 Evaluate triple sum and apply kicks.

12 / 35



SixTrackLib Implementation

∂φ

∂x̃
(x̃ , ỹ , τ̃) =

3∑
i=1

3∑
j=0

3∑
k=0

iaijk x̃
i−1ỹ j τ̃k , a = B−1 b

We chose to implement the e-cloud map in SixTrackLib to take
advantage of GPU tracking. The algorithm boils down to:

1 Store in memory the discrete potential φ
(example size: 500× 500× 500× 8× 8 bytes = 8 GB).

2 Use particle’s x , y , τ to find cell (x̃ = x−x0
dx ).

3 From cell’s 8 corners pi , assemble vector
b =

(
φ|pi ,

∂φ
∂x

|pi ,
∂φ
∂y

|pi ,
∂φ
∂τ

|pi ,
∂2φ
∂x∂y

|pi ,
∂2φ
∂x∂τ

|pi ,
∂2φ
∂y∂τ

|pi ,
∂3φ

∂x∂y∂τ
|pi , . . .

)

4 Perform matrix multiplication a = B−1 b to find aijk .
5 Evaluate triple sum and apply kicks.

12 / 35



SixTrackLib Implementation

∂φ

∂x̃
(x̃ , ỹ , τ̃) =

3∑
i=1

3∑
j=0

3∑
k=0

iaijk x̃
i−1ỹ j τ̃k , a = B−1 b

We chose to implement the e-cloud map in SixTrackLib to take
advantage of GPU tracking. The algorithm boils down to:

1 Store in memory the discrete potential φ
(example size: 500× 500× 500× 8× 8 bytes = 8 GB).

2 Use particle’s x , y , τ to find cell (x̃ = x−x0
dx ).

3 From cell’s 8 corners pi , assemble vector
b =

(
φ|pi ,

∂φ
∂x

|pi ,
∂φ
∂y

|pi ,
∂φ
∂τ

|pi ,
∂2φ
∂x∂y

|pi ,
∂2φ
∂x∂τ

|pi ,
∂2φ
∂y∂τ

|pi ,
∂3φ

∂x∂y∂τ
|pi , . . .

)
4 Perform matrix multiplication a = B−1 b to find aijk .

5 Evaluate triple sum and apply kicks.

12 / 35



SixTrackLib Implementation

∂φ

∂x̃
(x̃ , ỹ , τ̃) =

3∑
i=1

3∑
j=0

3∑
k=0

iaijk x̃
i−1ỹ j τ̃k , a = B−1 b

We chose to implement the e-cloud map in SixTrackLib to take
advantage of GPU tracking. The algorithm boils down to:

1 Store in memory the discrete potential φ
(example size: 500× 500× 500× 8× 8 bytes = 8 GB).

2 Use particle’s x , y , τ to find cell (x̃ = x−x0
dx ).

3 From cell’s 8 corners pi , assemble vector
b =

(
φ|pi ,

∂φ
∂x

|pi ,
∂φ
∂y

|pi ,
∂φ
∂τ

|pi ,
∂2φ
∂x∂y

|pi ,
∂2φ
∂x∂τ

|pi ,
∂2φ
∂y∂τ

|pi ,
∂3φ

∂x∂y∂τ
|pi , . . .

)
4 Perform matrix multiplication a = B−1 b to find aijk .
5 Evaluate triple sum and apply kicks.

12 / 35



SixTrackLib Implementation

∂φ

∂x̃
(x̃ , ỹ , τ̃) =

3∑
i=1

3∑
j=0

3∑
k=0

iaijk x̃
i−1ỹ j τ̃k , a = B−1 b

We chose to implement the e-cloud map in SixTrackLib to take
advantage of GPU tracking. The algorithm boils down to:

1 Store in memory the discrete potential φ
(example size: 500× 500× 500× 8× 8 bytes = 8 GB).

2 Use particle’s x , y , τ to find cell (x̃ = x−x0
dx ).

3 From cell’s 8 corners pi , assemble vector
b =

(
φ|pi ,

∂φ
∂x

|pi ,
∂φ
∂y

|pi ,
∂φ
∂τ

|pi ,
∂2φ
∂x∂y

|pi ,
∂2φ
∂x∂τ

|pi ,
∂2φ
∂y∂τ

|pi ,
∂3φ

∂x∂y∂τ
|pi , . . .

)
4 Perform matrix multiplication a = B−1 b to find aijk .
5 Evaluate triple sum and apply kicks.

13 / 35



SixTrackLib Implementation (2)

If each map needs multiple GBs of memory, it is prohibitive to
include more interactions.
Thanks to SixTrackLib’s flexibility and the work of Martin
Schwinzerl7, each map(TriCub) can point to the same stored
e-cloud potential(TriCubData).
Possible to include as many e-cloud maps as we want.

7More details in M. Schwinzerl, BE Seminar on SixTrackLib
14 / 35

https://indico.cern.ch/event/929467/ 


SixTrackLib Implementation (3)

B−1 is a constant, integer, sparse matrix of
size 64× 64 and a, b are vectors of size 64.
Typical algorithm requires 64× 64 = 4096
multiplications and additions, and ∼ 32KB
memory.
In GPUs, each “parallel processor” has its own
local memory. If it runs out, it will occupy the
memory of other processors.
Very important to minimize memory
consumption!

15 / 35



SixTrackLib Implementation (3)

Very important to minimize memory
consumption!
Inspection of matrix B−1 reveals that only the
numbers {1, 2, 3, 4, 6, 8, 9, 12, 18, 27} appear.
Developed code to write code that computes
this specific matrix multiplication explicitly.
→ reduces local memory (∼ 32KB to 1KB),
→ reduces number of multiplications and
additions (4096 to 1000).

↓

...

16 / 35



E-cloud setup

E-cloud exists across the full length of the LHC beam pipe. Most
significant contributors:

1 E-cloud in arc dipoles (66%)
2 E-cloud in quadrupoles (7%)

Place one interaction for each three dipoles.

E-cloud buildup depends
mildly on beam size.
Beta functions and
dispersion are the same.
Effect due to change of beta
functions (and dispersion) is
ignored.

17 / 35



E-cloud setup

Install one e-cloud per half-cell
→ 46 interactions per arc
→ 368 interactions.

Check in each interaction’s
location:

phase advances µx ,y ,
beta functions βx ,y ,
horizontal dispersion Dx ,
beam sizes σx ,y .

18 / 35



E-cloud setup - phase advances

Phase advances are distributed.
Artificial resonance excitation is minimized.

19 / 35



E-cloud setup - βx ,y ,Dx

Beta functions and dispersion show only a minor beating.

20 / 35



E-cloud setup - σx ,y

MAD-X slightly overestimates beam size8 (7%) through the
assumption of linear RF focusing.
PyHEADTAIL used to check effect of non-linear RF focusing,
small difference.

8Beam size defined as the standard deviation of a Gaussian distribution.
21 / 35



Collimators

E-cloud does not exist outside the
beam chamber.
In fact, not enough memory to
store fields across the full beam
chamber.
We use the three TCPs in IR7 to
limit particles’ oscillation in a
realistic, physical region.

22 / 35



Overview

During configuration of the e-cloud maps:
1 closed orbits (x , y , τ) are shifted to the center of the e-cloud,
2 dipolar kicks (px , py , pτ ) are subtracted.

23 / 35



1 Recap
Motivation
Electron cloud kick
Tricubic interpolation
Macroparticle noise
Interpolation artifacts

2 Configuration of simulations
SixTrackLib implementation
Tracking sequence configuration
Collimators

3 Tests
RF-Multipole test
PyHEADTAIL footprint test

4 Tracking Results
Frequency Map Analysis
Dynamic Aperture
Long-term tracking (losses)

24 / 35



RF-Multipole test
To test the tricubic map,

1 We artificially introduced an RF-Multipole (sextupole) in the
optics model of the LHC.

2 Using tricubic interpolation, we replicated the map of the
RF-Multipole.

3 Comparison of dynamic aperture between real RF-Multipole
map and replicated one.

25 / 35



PyHEADTAIL footprint test
To test the tricubic map,

1 Use same map (e-cloud without magnetic field) in
PyHEADTAIL (12 interactions, linear tracking) and
SixTrackLib (368 interactions and non-linear tracking).

2 Footprints are the same (tune shift depends only beta
functions)

26 / 35



1 Recap
Motivation
Electron cloud kick
Tricubic interpolation
Macroparticle noise
Interpolation artifacts

2 Configuration of simulations
SixTrackLib implementation
Tracking sequence configuration
Collimators

3 Tests
RF-Multipole test
PyHEADTAIL footprint test

4 Tracking Results
Frequency Map Analysis
Dynamic Aperture
Long-term tracking (losses)

27 / 35



Resources

After all the necessary configuration, we can use GPUs to track:
∼20 Nvidia Tesla V1007 GPUs available in HTCondor at
CERN.
4 Nvidia Tesla V100 GPUs in the CNAF cluster in Bologna
(through HL-LHC collaboration).
4 Nvidia Titan V GPUs of LIU and ABP (50/50) for the
purpose of developing and testing GPU-based simulation codes
(Many thanks to H. Bartosik)

Three types of simulations:
1 Frequency Map Analysis (20k turns) -> ∼ 30mins

2 Dynamic Aperture (1M turns) -> ∼ 8 hours
3 Long-term tracking, losses (20M turns) -> ∼ 4 days

7https://www.nvidia.com/en-us/data-center/tesla-v100/
28 / 35



E-cloud density

[A. Romano, PRAB 21, 061002 (2018)]

E-cloud build-up in dipolar fields has the characteristic of forming
two stripes of electrons in the beam chamber.

Higher intensities make stripes move to larger distances.
Lower intensities bring stripes closer to the beam’s center.
At lower intensities a stripe of electron forms in the center.

29 / 35



Simulations

Comparison between:
No e-cloud, IMO = 40 A

Arc dipoles’ e-cloud, SEY = 1.35, 0.7 · 1011ppb, IMO = 40 A

Arc dipoles’ e-cloud, SEY = 1.35, 1.2 · 1011ppb, IMO = 40 A

0.7 · 1011ppb 1.2 · 1011ppb

30 / 35



Frequency Map Analyses
0.
7
·1

01
1 p
pb

1.
2
·1

01
1 p
pb

N
o
e-
cl
ou

d

No central stripe
→ Tune-shift
Central stripe
→ non-linear detuning
→ resonances

31 / 35



Dynamic Aperture (DA)

On-momentum:
No central stripe (1.2 · 1011ppb) → Almost no effect.
Central stripe (0.7 · 1011ppb) → Some reduction at large
horizontal amplitudes.

32 / 35



Dynamic Aperture (DA)

On-momentum:
No central stripe (1.2 · 1011ppb) → Almost no effect.
Central stripe (0.7 · 1011ppb) → Some reduction at large
horizontal amplitudes.

Off-momentum:
No central stripe (1.2 · 1011ppb) → Small reduction in DA
Central stripe (0.7 · 1011ppb) → Significant reduction.

33 / 35



Long-term tracking (losses)

No central stripe (1.2 · 1011ppb) → Slightly larger losses than
without e-cloud
Central stripe (0.7 · 1011ppb) → Very significant losses, e-cloud
may not be representative (constant SEY = 1.35).

These simulations were performed mostly for testing purposes
to check the sanity of the simulation method.

34 / 35



Summary

Conclusion:
Fully defined the procedure to simulate slow e-cloud effects.
Implemented, optimized and tested the map in
SixTrackLib. (Tests with RF-Multipole, and comparison with
PyHEADTAIL)
Performed FMA, DA and long-term losses simulations.

On-going work:
Introduced e-clouds in arc quadrupoles (MQs).
Better probe effect of SEY, tunes, intensity etc.
Compare simulations with experimental data.

Thank you for your attention!
Konstantinos Paraschou

35 / 35



Summary

Conclusion:
Fully defined the procedure to simulate slow e-cloud effects.
Implemented, optimized and tested the map in
SixTrackLib. (Tests with RF-Multipole, and comparison with
PyHEADTAIL)
Performed FMA, DA and long-term losses simulations.

On-going work:
Introduced e-clouds in arc quadrupoles (MQs).
Better probe effect of SEY, tunes, intensity etc.
Compare simulations with experimental data.

Thank you for your attention!
Konstantinos Paraschou

35 / 35


	Recap
	Motivation
	Electron cloud kick
	Tricubic interpolation
	Macroparticle noise
	Interpolation artifacts

	Configuration of simulations
	SixTrackLib implementation
	Tracking sequence configuration
	Collimators

	Tests
	RF-Multipole test
	PyHEADTAIL footprint test

	Tracking Results
	Frequency Map Analysis
	Dynamic Aperture
	Long-term tracking (losses)


