RNTupleLight C API

Jakob Blomer

RNTuple On-Disk Format

Dataset / File

——m—

T o e —

Header Page C++ collections become offset columns

Cluster

Approximate translation between TTree and RNTuple concepts:

Basket =~ Page
Leaf ~ Column
Cluster =~ Cluster

|
—

Footer

struct Event {
int £Id;
vector<Particle> fPtcls;
b
struct Particle {
float fE;
vector<int> fIds;

1oE

e Header, Footer: RNTuple (non-ROOT), extensible serialization (Implementation, specification stub)

o Header: schema information
o Footer: location of pages and clusters
e Pages: ROOT compression envelope

o uncompressed content: little-endian fundamental types (possibly packed, e.g. bitfields)

e Container format:

o ROOT TFile (anchor TKey + header, footer, pages anonymous TKeys each)

o Bare file (for internal purposes)

o Planned for this year: DAOS object store (pages, header, footer in individual objects)

https://github.com/root-project/root/blob/master/tree/ntuple/v7/src/RNTupleDescriptor.cxx
https://github.com/jblomer/root/blob/ntuple-format-02/tree/ntuple/v7/doc/FORMAT.md

RNTuple Class Design

Event iteration
Reading and writing in event loops and through RDataFrame
RNTupleDataSource, RNTupleView, RNTupleReader/Writer

rApproximate translation between TTree and j
RNTuple classes:
TTree ~ RNTupleReader
Primitives layer / simple types RNTupleWriter
“Columns” containing elements of fundamental types (float, int,...) TTreeReader - RNTupleView
grouped into (compressed) pages and clusters 5 p
RColumn, RColumnElement, RPage TBranch = RField
TBasket ~ RPage
Storage layer / byte ranges % ;
RPageStorage, RCluster, RNTupleDescriptor B TTreeCache ~ RClusterPool b

e Storage layer: access to the schema, the pages, and the footer (= location of pages)

e Main classes:
o RPageSourceFile, RPageSinkFile, RRawFile (for file based access, local or remote)
o RPageSourceDaos, RPageSinkDaos (DAOS object store)
O

XyzLite Library Layering

libROOTNTuple

libRIO libROOTNTupleLite

libCore

libROOTIOLite

C Shim

libROOTFoundation (now includes [T,R]Error.h[xx])

Object library = DLL

D Depends on LLVM/cling

The libXyzLite libraries are built just
like any other ROOQOT libraries in ROOT
proper (including modules, dictionaries
etc)

The libXyzLite libraries must not use
any infrastructure from libCore but
only from libROOTFoundation

Current contents:

o RIOLite: RRawFile without
support for plugins, i.e. only
local files

o ROOTNTupleLite: RPageSink,
RPageSource

RNTupleLight C API

e C APl header and dynamic library, e.g., ibROOTNTupleLite.so
o Header files would be in
m io/iolite/inc/ROOT/IOLite.h
m tree/ntuplelite/inc/ROOT/NTupleLite.h
e Provides a C front to the C++ libROOTRNTuplelLite.so
e Minimal usable subset from RNTuple Light:
o Open an RNTuple that is stored in a local ROOT file
o Read the schema: fields, columns, pages, and their relationships
o Read pages into void * memory areas given column id and page id
m Takes care of decompressing and unpacking pages along the way
o Unsure about cluster pool support (async parallel page loading and decompression):
m Option 1. Unsupported with the C library
m Option 2: C library uses threads internally (might create problems)
m Option 3: C library provides means to let the user provide a thread scheduler
e Deliverable:
o Ctest program (bails out on compilation if CXX is defined) that uses dlopen to load
libROOTNTupleLite.so (no name mangling) and reads some data from an RNTuple
o To be added to ROOTTest

https://github.com/jblomer/root/blob/ntuple-minilib/tree/ntuple/v7/inc/ROOT/RNTupleLight-C.h

