
RNTupleLight C API

Jakob Blomer

2020-10-28



RNTuple On-Disk Format

2

● Header, Footer: RNTuple (non-ROOT), extensible serialization (Implementation, specification stub)
○ Header: schema information
○ Footer: location of pages and clusters

● Pages: ROOT compression envelope
○ uncompressed content: little-endian fundamental types (possibly packed, e.g. bitfields)

● Container format: 
○ ROOT TFile (anchor TKey + header, footer, pages anonymous TKeys each)
○ Bare file (for internal purposes)
○ Planned for this year: DAOS object store (pages, header, footer in individual objects)

https://github.com/root-project/root/blob/master/tree/ntuple/v7/src/RNTupleDescriptor.cxx
https://github.com/jblomer/root/blob/ntuple-format-02/tree/ntuple/v7/doc/FORMAT.md


RNTuple Class Design

3

● Storage layer: access to the schema, the pages, and the footer (= location of pages)
● Main classes: 

○ RPageSourceFile, RPageSinkFile, RRawFile (for file based access, local or remote)
○ RPageSourceDaos, RPageSinkDaos (DAOS object store)
○ ...



XyzLite Library Layering

4

libROOTFoundation (now includes [T,R]Error.h[xx])
Object library → DLL

libCore libROOTIOLite

libROOTNTupleLitelibRIO

libROOTNTuple

Depends on LLVM/cling

● The libXyzLite libraries are built just 
like any other ROOT libraries in ROOT 
proper (including modules, dictionaries 
etc)

● The libXyzLite libraries must not use 
any infrastructure from libCore but 
only from libROOTFoundation

● Current contents:
○ RIOLite: RRawFile without 

support for plugins, i.e. only 
local files

○ ROOTNTupleLite: RPageSink, 
RPageSource

C
 S

hi
m



RNTupleLight C API

5

● C API header and dynamic library, e.g., libROOTNTupleLite.so
○ Header files would be in 

■ io/iolite/inc/ROOT/IOLite.h
■ tree/ntuplelite/inc/ROOT/NTupleLite.h

● Provides a C front to the C++ libROOTRNTupleLite.so
● Minimal usable subset from RNTuple Light:

○ Open an RNTuple that is stored in a local ROOT file
○ Read the schema: fields, columns, pages, and their relationships
○ Read pages into void * memory areas given column id and page id

■ Takes care of decompressing and unpacking pages along the way
○ Unsure about cluster pool support (async parallel page loading and decompression):

■ Option 1: Unsupported with the C library
■ Option 2: C library uses threads internally (might create problems)
■ Option 3: C library provides means to let the user provide a thread scheduler

● Deliverable: 
○ C test program (bails out on compilation if CXX is defined) that uses dlopen to load 

libROOTNTupleLite.so (no name mangling) and reads some data from an RNTuple
○ To be added to ROOTTest

https://github.com/jblomer/root/blob/ntuple-minilib/tree/ntuple/v7/inc/ROOT/RNTupleLight-C.h

