
In partnership with:

Non-Event Data in CMS and Concurrency

David Dagenhart
21 October 2020



Context
CMS uses a multi-threaded framework

Used in production since 2016
Built using Intel’s Thread Building Block (TBB) task library
Many people have contributed significantly to this effort
Chris Jones has been the prime mover

Initially only supported
Concurrent processing of events and
Concurrent processing of modules within an event

2



Input File Concurrency
CMS processes one primary input file at a time

The primary input file is closed before the next is opened
There can be other input files open for mixing or secondary input
Most of what occurs when files are opened and closed is serial and not concurrent
Generally the module reading from the primary input file is only doing one thing at a time 
There is no plan to change this.

3



Non Event Metadata Supporting Concurrency in 2016
1. Configuration data saved from all processes in the history of a file. 
2. Tables supporting links between data products (for example a link from a 

track to a particular hit)
3. Tables supporting links when collections are copied with entries removed.
4. File version and a unique file identifier
5. Tables storing identifiers of data which was used when some other data was 

created
6. Indices into a file that point to Events, Runs, and Lumis and are used to 

navigate when iterating or processing a single Event.
7. A table documenting the processing history of a file
8. A registry of each data product branch stored in Events/Runs/Lumi TTrees.

4



Non Event Metadata Supporting Concurrency in 2016
The items listed on the previous slide were manually upgraded to support 
concurrency in the years prior to 2016. Several strategies were used:

1. As often as possible we restricted the data to only change at initialization and during 
input/output file opening and closing transitions. The rest of the time only constant 
operations are allowed.

2. Where necessary concurrent containers are used. Functions that need to run concurrently 
often use atomics to maintain thread safety.

3. In some cases, there is a copy of the data for each Event/Run/Lumi that is allowed to be 
processed concurrently.

In short, the code supporting this metadata was redesigned to support concurrent operations. 
It’s custom and different in each case what has been done. We try hard to avoid mutex locks.

5



6

CMS Data Hierarchy

Run 1

Lumi 1 Lumi 2

Event 1 Event 2 Event 3 Event 4



Run 1

Lumi 1 Lumi 2

Event 1 Event 2 Event 3 Event 4

7

CMS Data Processing Transitions
beginRun endRun

beginLumi endLumi beginLumi endLumi



8

Original Concurrent Transitions

Run 1

Lumi 1 Lumi 2

Event 1
Event 2

Event 3
Event 4



9

Fully Concurrent Transitions

Run 1

Lumi 1

Lumi 2

Event 1
Event 2

Event 3
Event 4



Constraining Memory
CMS’ driving force for multi-threading is to reduce memory usage

Allows average memory per core to be decreased

Configuration used to set limits
Independently control number of allowed concurrent events and lumis

10



Shared Resources and Task Queues
Most work in the framework is done via TBB tasks

Tasks needing the same resource are placed in a queue
Each unique resource gets its own queue

E.g. writing to a particular TFile
E.g. processing Lumis

When a resource is available, the task queue starts a waiting task
E.g. when a task using a resources finishes, the queue starts the next task

11



Lumi Limited Task Queue
Limited Task Queue

Has multiple independent lanes where each lane runs its own task
All lanes pull tasks from the same waiting task list
Each lane can be paused/restarted independently
If all lanes are paused, no new tasks will be started from the queue

Number of concurrent Lumis controlled via a limited queue
How many concurrent Lumis is set in the configuration to constrain memory use

12



13

Lumi Processing with Queue
Source Lumi LumiEvent Event



14

Lumi Processing with Queue
Source Lumi LumiEvent Event



15

Lumi Processing with Queue
Source Lumi Event Event



16

Lumi Processing with Queue
Source Lumi



17

Lumi Processing with Queue
Source Lumi



Measurements
Input file

1 Run
8 Lumis
200 events per Lumi

Standard CMS reconstruction job

KNL Hardware
Use 64 threads

Measurement variations
Only one Lumi at a time
8 concurrent Lumis

18



Total number of concurrent modules
Perfect efficiency when 
number of modules == number of threads

19

Reading Concurrency Plots



Total number of concurrent modules
Perfect efficiency when 
number of modules == number of threads

20

Reading Concurrency Plots

Dark Green
Number of concurrent events with modules 
actually running



Total number of concurrent modules
Perfect efficiency when 
number of modules == number of threads

21

Reading Concurrency Plots

Dark Green
Number of concurrent events with modules 
actually running

Light Green
Number of concurrent modules processing 
Lumis or Runs



22

Measurement Results
Single Lumi
Synchronizing on Lumi Boundaries
Thread utilization is poor



23

Results
Single Lumi
Synchronizing on Lumi Boundaries
Thread utilization is poor

8 Concurrent Lumis
Synchronizations are gone
Excellent thread utilization
Job finishes faster (~15%)



Complication
CMS supports modules which can only handle one thread at a time

The framework serializes access to those modules

Serial module can opt in to see Lumi and/or Run transitions
Module will not see next Lumis beginLumi until it has seen last Lumis endLumi

24



• We plan to add support for concurrent Runs in the future. 
• For the present there are other higher priorities
• The performance gain related to this is less significant than 

other things we are doing now.
• The design will be analogous to the design for concurrent lumis.

25

Concurrent Runs



26

EventSetup System Manages Data Associated with IOVs



• We’ve added a Limited Task Queue for each record type. This is 
the same mechanism we use to control concurrent lumis.

• We can independently configure the number of concurrent IOVs
for each type of record

• The task to start a lumi will not be placed into its limited queue 
until all the IOVs it requires have started

27

Concurrent IOVs (Interval of Validity)



• We added support for concurrent IOVs in 2019.
• Framework support exists now and is deployed although CMS 

still has work to do to get this validated and in use in production
• We expect to need this in the future more than now

28

Concurrent IOVs (Interval of Validity)



• This year (2020) we’ve added support for running modules that 
provide IOV related data concurrently

• It is implemented in a manner similar to the way Event data is 
handled

• Modules must declare the data they produce and consume.
• Modules do not run until data they consume is ready
• CMS is in the middle of a migration for all modules that consume 

this type of data to declare what they consume
• Other than the consumes declarations, the feature is fully 

implemented and working in the CMS Framework
• The migration can be implemented incrementally.

29

Modules Providing IOV Data



• This is a new feature under development this year.
• It allows transitions and production of data at the beginning and 

end of each process.
• It is similar to beginJob and endJob transitions we previously 

supported, but allows production of data, concurrent execution 
of modules, and ordering execution of modules at the beginning 
and end of processes.

• A transient version of this is already implemented and in use by 
CMS’ data quality monitoring code.

• We are currently implementing persistence for this type of data.

30

ProcessBlock Data



Conclusion
CMS implemented concurrency for Non-Event data needed to support 
concurrent events and modules prior to 2016.

Concurrent Lumis were introduced in 2018.

Concurrent IOVs were introduced in 2019 and concurrent execution of modules 
producing data managed with IOVs was introduced in 2020.

ProcessBlock data and transitions are coming in 2020.

Concurrent Runs are planned for the future.

31


