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Point Clouds and why they are Important!

➜Millions of depth sensors

available on the market

➜A point cloud is one of the most 

commonly used data structures in 

3D reconstruction models.

➜Traditional 2D 

ConvNets cannot solve

all problems!

➜Thus, 3D/4D and 

geometry-aware models

are required!
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Applications: Augmented Reality

no nose!

https://www.microsoft.com/en-us/research/project/holoportation-3/



Applications: Computer Vision
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Scene understanding

CV 

algorithm

http://www.cvlibs.net/datasets/kit

ti/



Common geometry processing pipeline



Common geometry processing pipeline



Point cloud processing: a multi-stage procedure

Registration:

● Given M1, ...,MN partial range-scans, find transformations T2, 

...,TN s.t. M1 ≅ T2(M2) ≅ … ≅ TN(MN) 



Shape Completion:

● Input: incomplete shape (some parts are missing)

● Output: complete shape

Registration is Really a Multi-Stage Procedure



Registration is Really a Multi-Stage Procedure

Point cloud upsampling:

● Input: low-res representation

● Output: high-res representation



Fast, neural 

network
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Depth map upsampling leverages CNNs
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Ground truth [Riegler et al. 2016]Low-resolution input

8x super-resolution



Reconstructed surface

Ground truth [Riegler et al. 2016] [Voynov et al., 2019]



However…

≠

Depth images:

2D image 

3D point clouds:

completely unstructured!



Images: Laplacian GANs [Denton et al., NIPS 2015]

• Increase image resolution in a coarse-to-fine manner during 

synthesis 

• Cascading image synthesis with a series of generative networks 

G0, …, Gk

• Each network generates a high-frequency residual image

• is an upsampling operator

• Can we perform similar multi-stage upsampling with point 

clouds? 



Latent Space Laplacian Pyramid GAN

• Generative model that produces synthetic shapes

• High-resolution point clouds via a latent space Laplacian pyramid

• Operates in the space of latent codes, i.e. does not require

dimensionality reduction during training



Latent Space Laplacian Pyramid GAN

First demonstration of latent GANs applied to point sets 

[Achlioptas et al., ICML 2018]



Latent Space Laplacian Pyramid GAN

Auto-encoding NNs Generative Adversarial NNs



• The network either accepts or generates an 

initial point cloud X0

• Input shape: upsampling mode

• No input shape: shape synthesis

• Processes it with a series of K learnable 

steps

Latent-Space Laplacian Pyramids for Adversarial 

Representation Learning with 3D Point Clouds



Full architecture of LSLP-GAN model

(1) upsamples its input using a non-learnable operator U

(2) encodes the upsampled version into the latent space by fk

(3) performs correction of the latent code via a conditional GAN Gk

(4) decodes the corrected latent code using gk



Spaces of 3D point clouds

• We start with a series of 3D spaces

• is a set of 3D points on a surface

Intuition

• Modeling 3D point clouds is a challenge due to high dimensionality

• We start with a low-detail X0

• We decompose the task into a sequense of easier stages

• Each stage aims at a gradual increase of detail



Training auto-encoding point networks on 

multiple scales

• Key idea: learning in the manifold of latent codes

• We use 3D shape spaces                      and construct a series of 

latent spaces

• We train K point autoencoders for point clouds of 

increasing resolution



Results: trained autoencoders

• Inputs and reconstructions 

using our autoencoders at 

resolutions ni ∈ {512, 1024, 

2048} of the 3D point cloud 

• Scales with the increase in 

the resolution



Laplacian pyramid in the space of latent codes

• Input: point cloud

• We aim to go from Xk-1 to Xk,

• Coarse point cloud:                             , i.e. 

for each point x from Xk we generate



Laplacian pyramid in the space of latent codes

Latent code

Corrected latent code

Refined point cloud



Qualitative results: novel shape synthesis

Examples of novel shapes synthesised using our LSLP-GAN model 



Quantitative results



Qualitative results: upsampling

3D point clouds upsampling results using our model

ni ∈ {512, 1024, 2048} of the 3D point cloud 



Summary

• Generative model that produces synthetic shapes

• High-resolution point clouds via a latent space Laplacian pyramid

• Operates in the space of latent codes, i.e. does not require

dimensionality reduction during training



What’s next?

3D representations: meshes

(Cheng et al., 2019)

More applications: upsampling (Li et al., 2018)

Alternative formulations: normalizing 

flows (Yang et al., 2019)



THANK YOU


