Latent-Space Laplacian Pyramids for Adversarial Representation Learning with 3D Point Clouds

Vage Egiazarian, Savva Ignatyev, <u>Alexey Artemov</u>, Oleg Voynov, Andrey Kravchenko, Youyi Zheng, Luiz Velho, Evgeny Burnaev

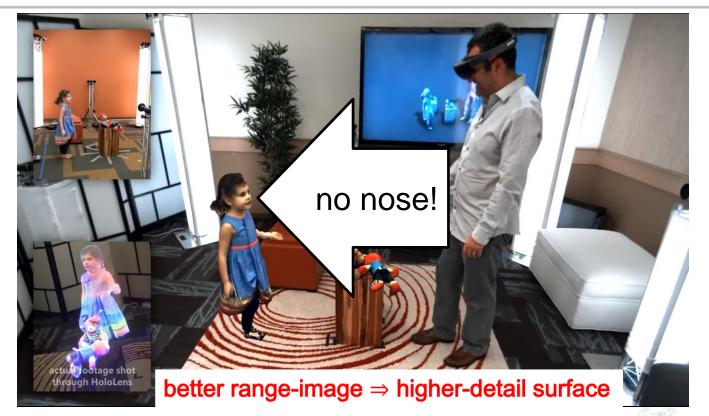
Point Clouds and why they are Important!

- → Millions of depth sensors available on the market
- → A point cloud is one of the most commonly used data structures in 3D reconstruction models.
- → Traditional 2D ConvNets cannot solve all problems!
- → Thus, 3D/4D and geometry-aware models are required!

Structured light scans

LiDAR range-scans

Applications: Augmented Reality



https://www.microsoft.com/en-us/research/project/holoportation-3

Applications: Computer Vision

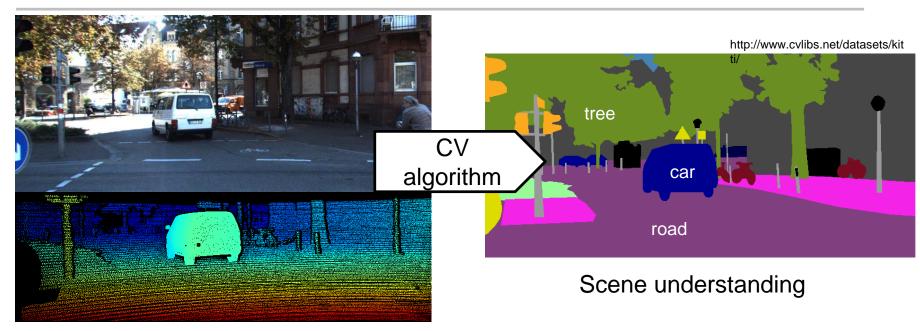
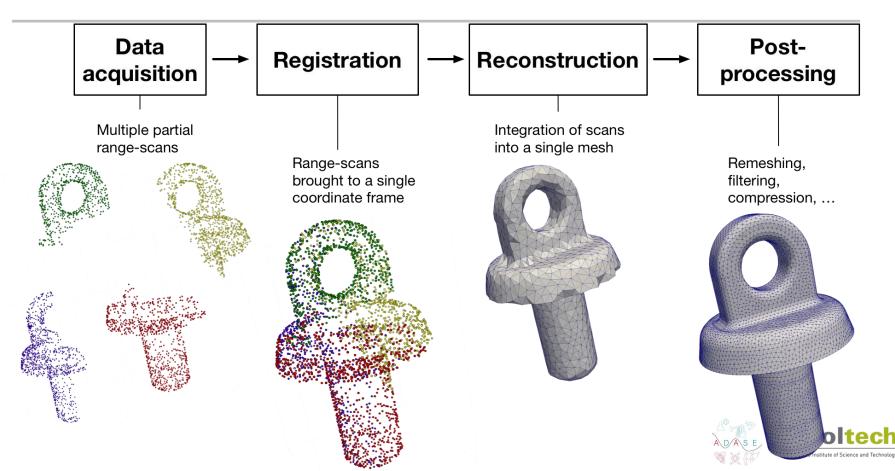


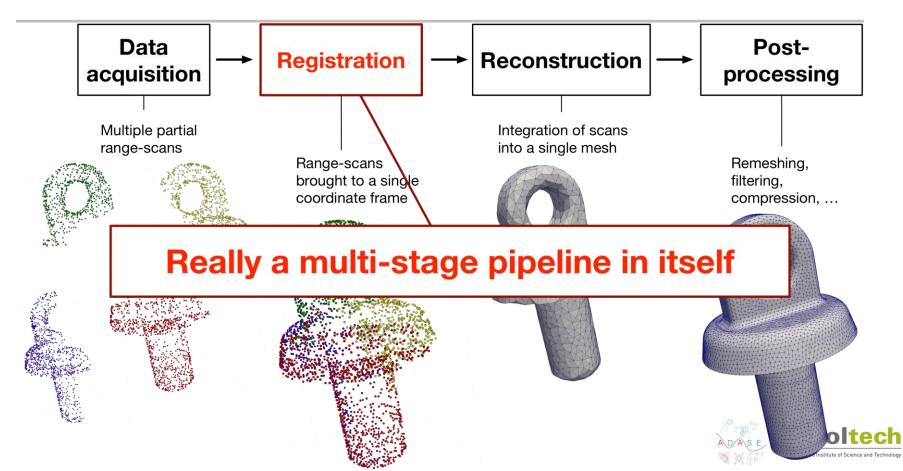
Photo + Range-image

better range-image \Rightarrow better scene understanding

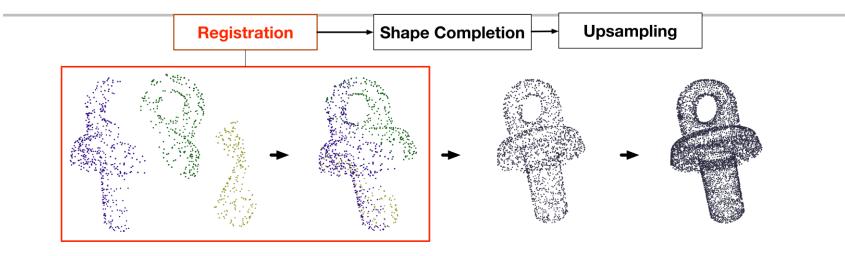
Common geometry processing pipeline



Common geometry processing pipeline



Point cloud processing: a multi-stage procedure

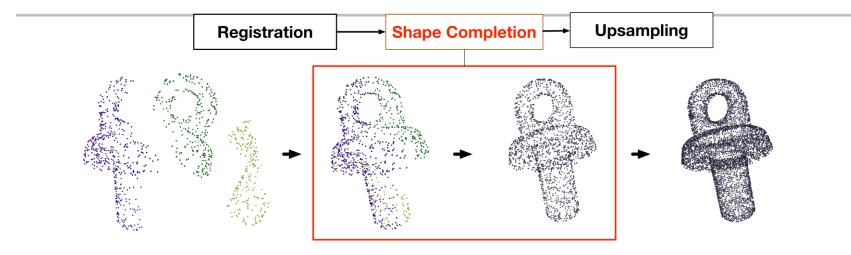


Registration:

• Given M_1, \dots, M_N partial range-scans, find transformations T_2 ,

...,
$$T_N$$
 s.t. $M_1 \cong T_2(M_2) \cong ... \cong T_N(M_N)$

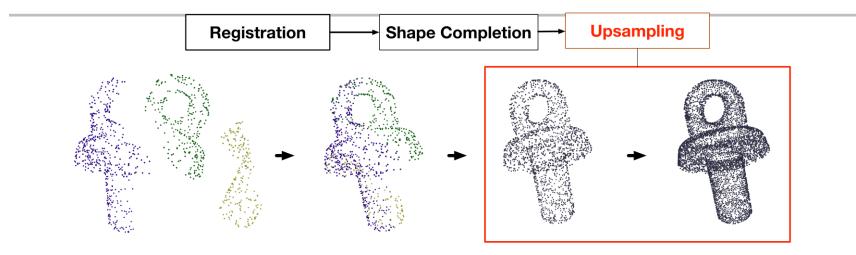
Registration is Really a Multi-Stage Procedure



Shape Completion:

- Input: incomplete shape (some parts are missing)
- Output: complete shape

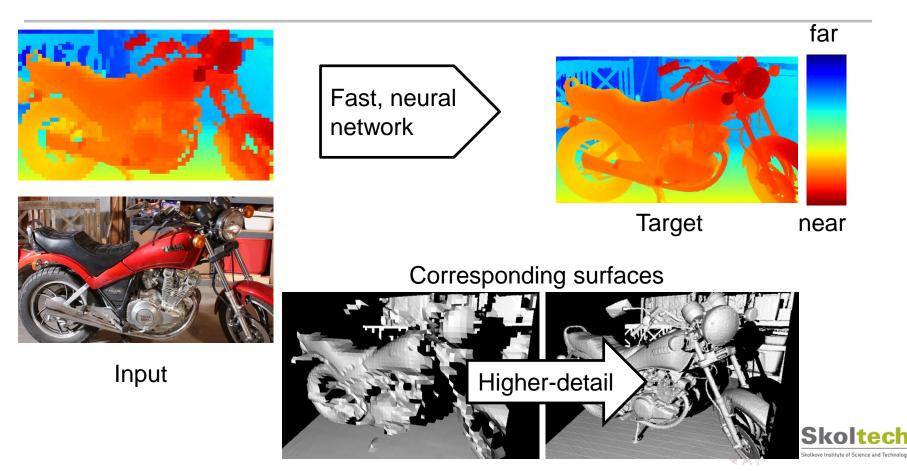
Registration is Really a Multi-Stage Procedure



Point cloud upsampling:

- Input: low-res representation
- Output: high-res representation

Depth map upsampling leverages CNNs



8x super-resolution

Ground truth

Low-resolution input

[Riegler et al. 2016]

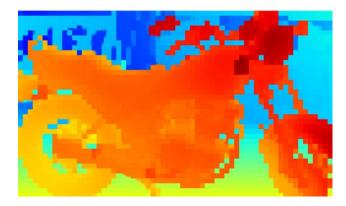
Reconstructed surface



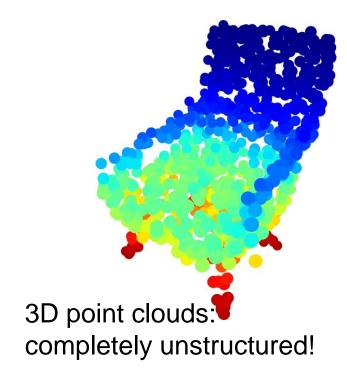
Ground truth

[Riegler et al. 2016]

However...



Depth images: 2D image



Images: Laplacian GANs [Denton et al., NIPS 2015]

- Increase **image** resolution in a coarse-to-fine manner during synthesis
- Cascading image synthesis with a series of generative networks
 *G*₀, ..., *G*_k
- Each network generates a high-frequency residual image $I_k = U(I_{k+1}) + G_k(U(I_{k+1}), z_k)$ $U(\cdot)$ is an upsampling operator
- Can we perform similar multi-stage upsampling with point clouds?

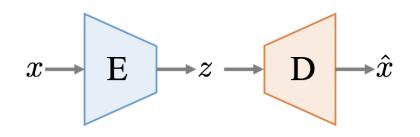
Latent Space Laplacian Pyramid GAN

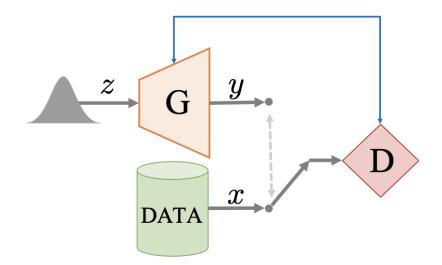
- Generative model that produces synthetic shapes
- High-resolution point clouds via a latent space Laplacian pyramid
- Operates in the space of latent codes, i.e. does not require dimensionality reduction during training

Latent Space Laplacian Pyramid GAN

First demonstration of latent GANs applied to point sets [Achlioptas et al., ICML 2018]

Latent Space Laplacian Pyramid GAN

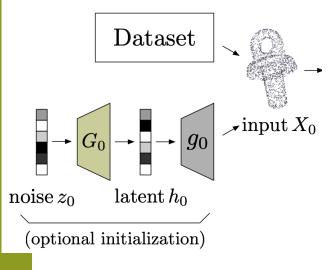




Auto-encoding NNs

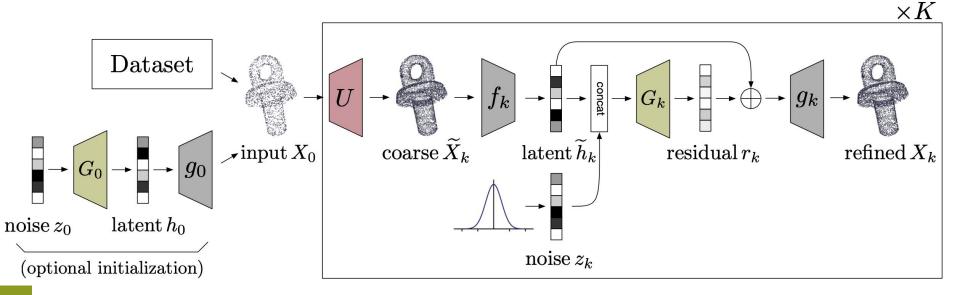
Generative Adversarial NNs

Latent-Space Laplacian Pyramids for Adversarial Representation Learning with 3D Point Clouds



- The network either accepts or generates an initial point cloud X_0
 - Input shape: upsampling mode
 - No input shape: shape synthesis
- Processes it with a series of *K* learnable steps

Full architecture of LSLP-GAN model



- (1) upsamples its input using a non-learnable operator U
- (2) encodes the upsampled version into the latent space by fk
- (3) performs correction of the latent code via a conditional GAN Gk
- (4) decodes the corrected latent code using gk

Spaces of 3D point clouds

• We start with a series of 3D spaces $\mathbb{R}^{n_0 \times 3}, \mathbb{R}^{n_1 \times 3}, \dots, \mathbb{R}^{n_K \times 3}$

•
$$X_k = \{x_i\}_{i=1}^{n_k}$$
 is a set of 3D points on a surface

Intuition

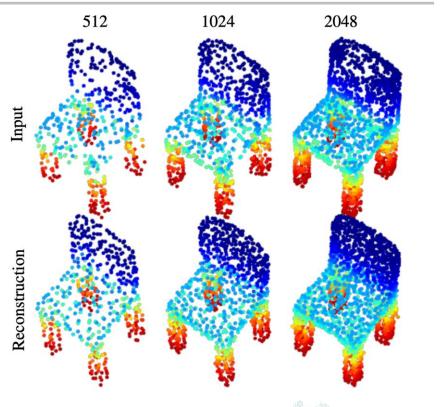
- Modeling 3D point clouds is a challenge due to high dimensionality
- We start with a low-detail X_0
- We decompose the task into a sequense of easier stages
- Each stage aims at a gradual increase of detail

Training auto-encoding point networks on multiple scales

- Key idea: learning in the manifold of latent codes
- We use 3D shape spaces $\{\mathbb{R}^{n_k \times 3}\}_{k=1}^K$ and construct a series of latent spaces $\{\mathbb{R}^{d_k}\}_{k=1}^K$
- We train *K* point autoencoders $\{(f_k, g_k)\}_{k=1}^K$ for point clouds of increasing resolution $n_k = 2^k \cdot n_0$

Results: trained autoencoders

- Inputs and reconstructions using our autoencoders at resolutions n_i ∈ {512, 1024, 2048} of the 3D point cloud
- Scales with the increase in the resolution



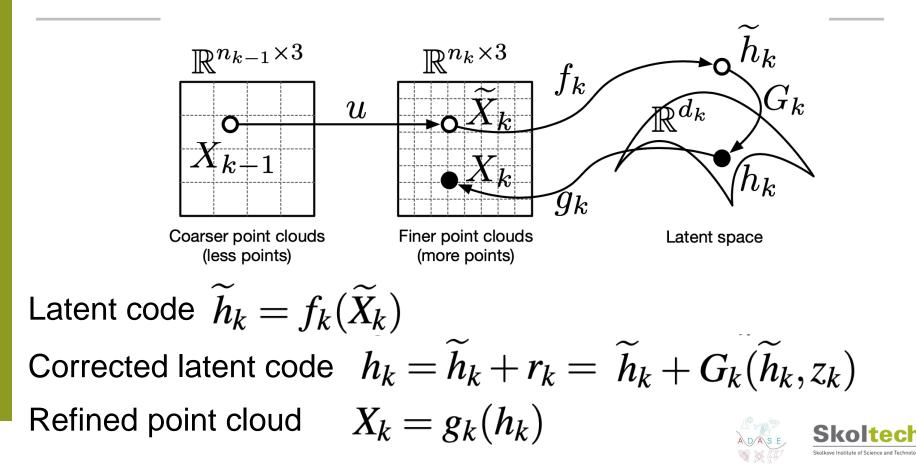
Skoltec

Laplacian pyramid in the space of latent codes

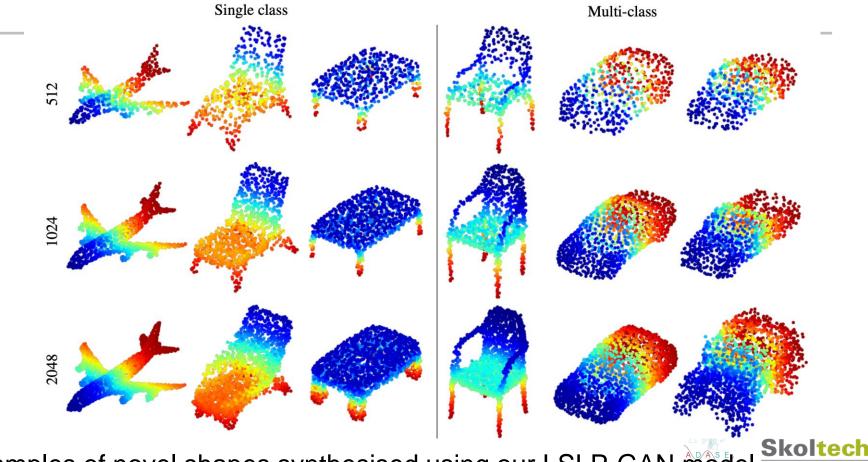
- Input: point cloud $X_{k-1} \in \mathbb{R}^{n_{k-1} imes 3}$
- We aim to go from X_{k-1} to X_k , $n_k = 2n_{k-1}$
- Coarse point cloud: $\widetilde{X}_k = U(X_{k-1})$, i.e.

for each point *x* from X_k we generate $\widetilde{x} = \frac{1}{m} \sum_{i \in NN(x)} x_i$

Laplacian pyramid in the space of latent codes



Qualitative results: novel shape synthesis

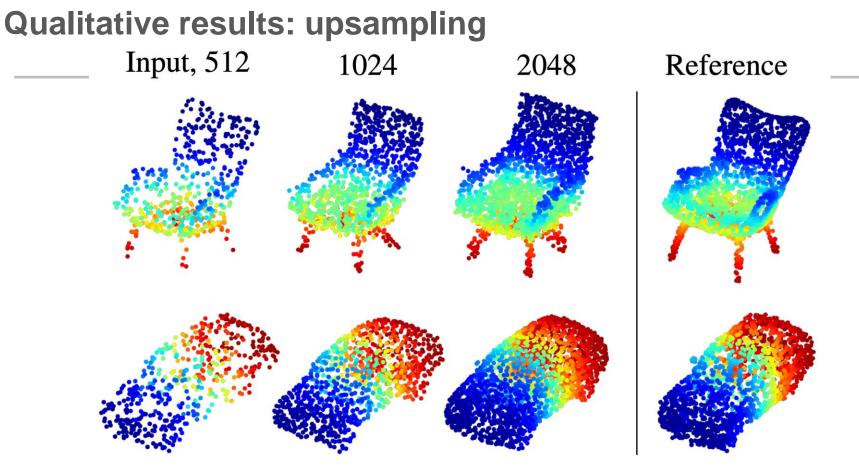


Examples of novel shapes synthesised using our LSLP-GAN model

Quantitative results

Shape	MMD-CD $\times 10^{-3}$		COV-CD, %		$JSD \times 10^{-3}$	
class	L-GAN	Ours	L-GAN	Ours	L-GAN	Ours
car	0.81	0.71	23.5	32.1	28.9	24.2
chair	1.79	1.71	44.9	47.8	13.0	10.1
sofa	1.26	1.23	43.9	46.3	9.6	9.3
table	1.93	1.77	39.7	47.8	19.9	10.1
airplane	0.53	0.51	41.7	44.0	17.1	13.8
multiclass	1.66	1.55	41.4	45.7	14.3	9.8

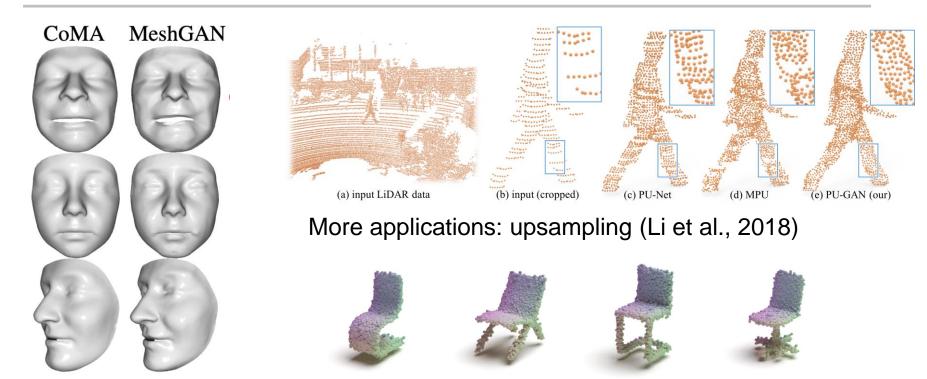
Table 2: Performance evaluation of our proposed LSLP-GAN model as compared to the baseline L-GAN model (Achlioptas et al., 2018).



3D point clouds upsampling results using our model $n_i \in \{512, 1024, 2048\}$ of the 3D point cloud

- Generative model that produces synthetic shapes
- High-resolution point clouds via a latent space Laplacian pyramid
- Operates in the space of latent codes, i.e. does not require dimensionality reduction during training

What's next?



3D representations: meshes (Cheng et al., 2019)

Alternative formulations: normalizing flows (Yang et al., 2019)

