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Regression and Uncertainty Estimation

Goal: Provide the measure of uncertainty 𝜎̂(x) of ML model prediction f̂ (x) at a given point.

Some machine learning models along with
approximation

f̂ (x) ≃ f (x)

can provide

uncertainty estimation

𝜎̂2(x) ≃ E
(︀
f̂ (x) − f (x)

)︀2
.
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Regression and Uncertainty Estimation

Goal: Provide the measure of uncertainty 𝜎̂(x) of ML model prediction f̂ (x) at a given point.

Some machine learning models along with
approximation

f̂ (x) ≃ f (x)

can provide

uncertainty estimation

𝜎̂2(x) ≃ E
(︀
f̂ (x) − f (x)

)︀2
.

Use cases:
Possibility of rejection to predict:

I out-of-distribution data detection
I adversarial examples detection

Active learning

Bayesian optimization
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Machine Learning Models and Uncertainty Estimation

General approaches:
I Analytic statistical approaches (variance estimates and confidence intervals based on CLT);

I Bootstrap.

Bayesian inference

Model-specific approaches:
I Gaussian processes for regression and classification;

I Neural networks with variance-predicting subnetwork;

I Decision trees variance estimation at leaves.
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Bayesian Approach Machine Learning

Consider a probabilistic model (for example, neural network):

p(y | x, w),

where
x is a neural network input;
w is a vector of model parameters (i.e., neural network weights).

In Bayesian approach, w is assumed to be a random variable with some prior distribution:

w ∼ p.
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Bayesian Model Averaging
Let us be given the dataset D = {xi , yi}N

i=1.
We can compute a posterior distribution:

p(w | D) = p(D | w)p(w)∫︀
p(D | w)p(w)dw .

The standard approach starts from considering the posterior predictive distribution

p(y | x, D) =
∫︁

p(y | x, w) p(w | D) dw = Ep(w|D) p(y | x, w).

If we can sample from posterior, then we can naturally perform Bayesian model averaging

Ep(w|D) p(y | x, w) ≈ p̄T (y | x, D) = 1
T

T∑︁
t=1

p(y | x, wt),

where wt ∼ p(w | D), t = 1, . . . , T .
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Why Bayesian?
In practice, the access to posterior p(w | D) gives you very reach information, i.e. not only
average, but

variance of p(y | x, w),
quantiles.

However, sampling from p(w | D) might be very complicated.

That’s why essentially non-Bayesian model averaging is often performed, i.e.

p̄T (y | x, D) = 1
T

T∑︁
t=1

p(y | x, wt),

where parameters wt are obtained via
training of model from different random initialization ⇒ ensembling;
usage of dropout on inference stage ⇒ Monte-Carlo dropout.
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Bayesian Inference problem

In Bayesian problems we are interested in posterior distribution of latent variables:

p(z | x) = p(x | z) p(z)
p(x) ,

where x – observed data, z – latent (unobserved) variables.

Posterior allows to reason about the uncertainties in latent variables.

The following distributions are involved:
p(z | x) – posterior (our updated knowledge about z after we have observed data x);
p(z) – prior (our knowledge about z before we have observed data x);
p(x | z) – likelihood (probability of data x given latent variables z);
p(x) – normalizing constant for p(z | x) to be a proper distribution.
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Bayesian Inference problem
Posterior distribution:

p(z | x) = p(x | z) p(z)
p(x) .

The problem with exact posterior computation comes from the denominator:

p(x) =
∫︁

z
p(x , z)dz

as
generally, the complexity of this integral computation grows exponentially with
dimensionality;

an exception is the case of conjugate pairs of prior and likelihood.

That is why in practice we use approximate Bayesian inference:
MCMC (Markov Chain Monte Carlo);
Variational Inference.
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Markov Chain Monte Carlo

Markov chain Monte Carlo (MCMC) – a family of generic methods, which have theoretical
guarantees under some mild conditions of receiving exact samples from the posterior
distribution.

Idea:
design a Markov chain (zk)k∈N , whose stationary distribution is

p(z | x) ∝ p(x | z) p(z)

known up to a normalization constant;
it means, that starting from a sample from a prior p(z), distribution of zK converges to
the target p(z | x) as K goes to infinity.
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Markov Chain Monte Carlo
Metropolis Hastings (MH) algorithms is an option:

Draw a proposal z ′ from some transition density 𝜋(z ′ | z , x).
Accept / Reject the proposal with probability

𝛼(z , z ′) = 1 ∧ p(z ′ | x) 𝜋(z | z ′, x)
p(z | x) 𝜋(z ′ | z , x) .
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Markov Chain Monte Carlo

Many recent advances for efficient MCMC methods, using Langevin dynamics, Hamiltonian
Monte Carlo, ...

Advantages:
1 Generic (does not require introduction of a family of distributions).

2 Theoretical guarantees for fairly general cases.

Disadvantages:
The rate of convergence could be really slow.
You never know in advance how long to run a chain to receive decent samples from it.
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Variational Inference

1 VI turns inference into optimization.
2 Introduce a variational family of

distributions over the latent variables:

𝒬 = {q𝜑(z), 𝜑 ∈ Φ}.

3 Fit the variational parameters 𝜑 to
become close (usually in KL) to the exact
posterior.

Source: David Blei, Rajesh Ranganath, Shakir Mohamed: Variational Inference:Foundations
and Modern Methods. NIPS 2016, December 5, 2016.
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Evidence Lower Bound (ELBO)

Typically, in VI methods we are interested in minimizing Kullback-Leibler divergence between
variational distribution and the target:

KL
(︀
q𝜑(z)‖p(z | x)

)︀
=
∫︁

q𝜑(z) log q𝜑(z)
p(z | x) .

But in practice it is convenient to consider the equivalent task, which is called ELBO:

ℒ(x ; 𝜑) =
∫︁

q𝜑(z) log p(z | x)
q𝜑(z) dz

and can be interpreted as a lower bound for the log-likelihood:

log p(x) ≥ ℒ(x ; 𝜑).
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Evidence Lower Bound (ELBO)

A key observation here is that to compute both these formulas we still need to have
p(z | x).

And as we discussed, it is complicated because of the normalizing constant p(x).

It can be shown, that for optimization we do not need p(z | x) to be normalized:

ℒ(x ; 𝜑) =
∫︁

q𝜑(z) log p(z | x)
q𝜑(z) dz =

∫︁
q𝜑(z) log p(x , z)

p(x) q𝜑(z)dz =
∫︁

q𝜑(z) log p(x , z)
q𝜑(z) dz−C .

as p(z , x) = p(x | z)p(z) and the constant C = p(x) does not depend on 𝜑.

The integral is usually computed using MC-estimate.
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Variational Inference

Advantages:
1 Compared to MCMC, scales faster to high dimensions.
2 Allows us to leverage complexity and accuracy, selecting a family of distribution.
3 Allows efficient mini-batch optimization, which scales to massive data.

Disadvantages:
By construction it introduces bias, since we are considering only a family of parametric
distributions.
It means, we in principle cannot obtain exact approximation of the posterior.
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Mean Field Gaussian Variational Inference

The most straightforward choice of the Variational family is fully
factorized Gaussian.

In this case,
q𝜑 = 𝒩

(︀
𝜇𝜑, diag{𝜎2

𝜑}
)︀
,

where each 𝜇𝜑 and 𝜎2
𝜑 are vectors of size dim(z).

Main advantage: there are only 2dim(z) learnable parameters.

The disadvantage is in its
expressiveness:

Maxim Panov (Skoltech) Variational Inference 27.11.2020 16 / 39



Normalizing Flows
Recently, new deterministic parametric models, Normalizing Flows, were suggested to
transform one probability density to another.

Formally, Normalizing Flow:
I invertible parametrized transformation T𝜑;
I both T𝜑 and T −1

𝜑 are differentiable.

Moreover, determinant JT𝜑
of Jacobian of T𝜑 should be easy to compute.

Given a sample from a simple density u ∼ g(u), we deterministically transform it as

z = T𝜑(u).

Using change of variables formula we can compute the resulting density:

q𝜑(z) = g(u)|JT (u)|−1.
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Normalizing Flows
In case of K flows, resulting density is expressed as follows:

log qK
𝜑 (z) = log g(u0) −

K∑︁
i=0

log |JTi (ui)|.

This log-density is then used in the ELBO, using Monte Carlo estimation of the integral:

ℒ(x ; 𝜑) =
∫︁

qK
𝜑 (z) log p(x , z)

q𝜑(z) dz ,

where

log p(x , z)
q𝜑(z) = log p(x , z) − log g(u0) +

K∑︁
i=0

log |JTi (ui)|.
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Normalizing Flows
We can compose these transformations, and use them in variational inference framework,
minimizing KL between resulting distribution qK

𝜑 (z) and target.
Even simple transformation stacked on top of each other are capable to transform a
simple density to a complex one:

Source: Papamakarios et al., 2019, Normalizing flows for probabilistic modeling and inference.
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Examples of normalizing flows
We briefly consider examples of the most known normalizing flows. Some of them are simple,
yet very expressive.

1 Planar and Radial Flows. The pioneering work on normalizing flows were planar and
radial flows were introduced. Simple form transitions, parametrized by learnable
parameters.

2 RealNVP. The idea is to keep some part of coordinates unchanged, while transform the
rest using an affine transformation. Parameters of affine transformation are usually
arbitrarily complex neural networks.

3 IAF. Invertible Autoregressive Flow (IAF) also performs affine transformation, but in
contrast to RealNVP, it changes all coordinates, without keeping unchanged. To compute
determinant of Jacobian effectively, we introduce a restriction, that neural networks which
perform Affine transformation should be autoregressive.

D. Rezende et al., Variational Inference with Normalizing Flows

L. Dinh et al., Density estimation using Real NVP

D. Kingma et al., Improved Variational Inference with Inverse Autoregressive Flow
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MetFlow: Metropolized Flows

We already know, that Variational Inference methods suffer from bias.

Even if variational family is very expressive, there is still no guarantees it contains target
distribution.

MCMC methods do not have the issue. But they could be impractically slow.

MetFlow proposes a possible way to enhance Variational Inference
I with Metropolis-Hastings algorithm
I using expressive Normalizing Flows as proposals.

Source: Thin, Kotelevskii, Denain, Grinsztajn, Durmus, Panov, Moulines, MetFlow: A New Efficient Method for Bridging the Gap between Markov Chain Monte

Carlo and Variational Inference
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Why is it difficult to make stochastic transitions within VI framework?

ℒ(𝜑; x) =
∫︁

qK
𝜑 (z) log p(x , z)

qK
𝜑 (z)

dz .

1 Deterministic normalizing flows:

qK
𝜑 (z) = q0

𝜑(z)
K∏︁

i=1
|JT i

𝜑
(zi)|−1,

where JT i
𝜑
(zi) is a determinant of Jacobian of T i

𝜑;
2 General case:

qK
𝜑 (z) = q𝜑(zK ) =

∫︁
q𝜑(z0, . . . , zK−1, zK )dz0...K−1.

So it requires integration over all intermediate variables to be used in the ELBO.
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MetFlow: Notations

T𝜑,uk+1(zk) – proposal mapping;

(uk)k∈N* – sequence of i.i.d. random variables, called innovation noise with density h;

𝜑 – parameters used in proposal;

𝛼𝜑,u(z) – acceptance function, associated with current point z and proposal point
T𝜑,u(z).

M𝜑,h(zk , A) =
∫︀

h(u)Q𝜑,u(zk , A)du – integrated kernel;

Q𝜑,u(z , A) = 𝛼𝜑,u(z)𝛿T𝜑,u(z)(A) + {1 − 𝛼𝜑,u(z)}𝛿z(A) – conditional kernel, associated
with u.
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MetFlow: New Variational Family

Denote 𝜉0
𝜑 our initial distribution.

Variational family after applying K such Markov kernels:

Q = {𝜉K
𝜑 = 𝜉0

𝜑M𝜑,h1M𝜑,h2 . . . M𝜑,hK : 𝜑 ∈ Φ}.

We want to minimize KL divergence: KL(𝜉K
𝜑 ‖𝜋).

Next key assumption: T𝜑,u is C1 diffeomorphism, and JT𝜑,u denotes determinant of Jacobian
of the transformation.
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MetFlow: Notation and theory behind

Lemma 1. Assume that 𝜉0
𝜑 admits density m0

𝜑.
Assume that T𝜑,u is C1 diffeomorphism. Then the distribution

𝜉1
𝜑(· | u) =

∫︁
Rd

m0
𝜑(z0)Q𝜑,u(z0, ·)dz0,

has density, given by:

m1
𝜑(z | u) = 𝛼𝜑,u

(︀
T −1

𝜑,u(z)
)︀
m0

𝜑

(︀
T −1

𝜑,u(z)
)︀
JT −1

𝜑,u
(z) +

(︀
1 − 𝛼𝜑,u(z)

)︀
m0

𝜑(z).

And distribution 𝜉1
𝜑 has density given by m1

𝜑(z) =
∫︀

m1
𝜑(z | u)h(u)du.
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MetFlow: Notation and theory behind

Proposition 1: Assume that 𝜉0
𝜑 admits density m0

𝜑. Assume that T𝜑,u is C1 diffeomorphism.
Then for any {ui}K

i=1 ∈ UK the distribution 𝜉K
𝜑 (· | u1...K ) = 𝜉0

𝜑Q𝜑,u1 . . . Q𝜑,uK has density mK
𝜑

given by:

mK
𝜑 (z | u1...K ) =

∑︁
a1...K ∈{0,1}K

mK
𝜑 (z , a1...K | u1...K ),

mK
𝜑 (z , a1...K | u1...K ) =

K∏︁
i=1

𝛼ai
𝜑,ui

(︀
∘K

j=iT
−aj
𝜑,uj

(z)
)︀
m0

𝜑

(︀
∘K

j=1T −aj
𝜑,uj

(z)
)︀
J

∘K
j=1T

−aj
𝜑,uj

(z)
(z),

where ∘K
j=iTj = Ti ∘ · · · ∘ TK .
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MetFlow: Notation and theory behind

We can derive density of variational family after application of K such kernels M:

mK
𝜑 (z , a1...K | u1...K ) =

K∏︁
i=1

𝛼ai
𝜑,ui

(︀
∘K

j=iT
−aj
𝜑,uj

(z)
)︀
m0

𝜑

(︀
∘K

j=1T −aj
𝜑,uj

(z)
)︀
J

∘K
j=1T

−aj
𝜑,uj

(z)
(z),

where ∘K
j=iTj = Ti ∘ · · · ∘ TK .

And marginal density can be obtained by

mK
𝜑 (z | u1...K ) =

∑︁
a1...K ∈{0,1}K

mK
𝜑 (z , a1...K | u1...K ),

mK
𝜑 (z) =

∫︁
mK

𝜑 (z | u1...K )h(u1...K )du1...K .
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MetFlow: A New ELBO

Objective: optimize the ELBO

ℒ(𝜑; x) =
∫︁

log
(︃

p(x , z)
mK

𝜑 (z)

)︃
mK

𝜑 (z)dz .

Problem: The distribution mK
𝜑 is untractable (a mixture of 2K components)!!!

Idea: Define a new ELBO

ℒaux (𝜑; x) =
∑︁

a1...K ∈{0,1}K

∫︁
h(u1...K )mK

𝜑 (zK , a1...K | u1...K )s𝜑(x , zK , a1...K , u1...K )dzK du1...K ,

where
s𝜑(x , zK , a1...K , u1...K ) = log

(︁
2−K p(x , zK )/mK

𝜑 (zK , a1...K | u1...K )
)︁

.
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A new ELBO

This is a proper evidence lower bound!!!

Jensen’s inequality for mK
𝜑 (zK , a1...K | u1...K ) indeed shows:

∑︁
a1...K ∈{0,1}K

∫︁
mK

𝜑 (zK , a1...K | u1...K ) log
(︃

2−K p(x , zK )
mK

𝜑 (zK , a1...K | u1...K )

)︃
dzK ≤ log p(x) .

Maxim Panov (Skoltech) Variational Inference 27.11.2020 29 / 39



MetFlow: Results
Sampling from a mixture of 8 Gaussians.
MetFlow consists here of 5 RealNVP flows, separated by the MH algorithm.
As a competitor, we have 5 RealNVP flows of the same architecture.

We see, that MH algorithm prevents “tails” between modes.
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Intuition behind VAE
Variational AutoEncoder (or VAE) is one of the most popular generative models nowadays.
In contrast to GAN, in VAE we simultaneously train:

I inference model (or encoder, which learns meaningful latent representation);
I generation model (or decoder, which reconstructs latent variables into objects).

Schematically, VAEs architecture could be expressed as:

Source: What The Heck Are VAE-GANs?
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MetFlow to MetVAE

Fix a generative model p𝜃 from VAE achieving SOTA results.
Approximate the posterior p𝜃(z | (xi)L

i=1) with a NAF and MetFlow with 5 RealNVP flows.

Fixed digits

NAF MetFlow
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MetFlow to MetVAE
As an example, we will address collaborative filtering problem.

For each user u, the model starts by sampling a D-dimensional latent representation zu
from a standard Gaussian prior.
The latent representation zu is transformed via a non-linear function g𝜃 to produce a
probability distribution 𝜋𝜃(zu) over I items. Here we set

𝜋𝜃(z) = softmax
(︀
g𝜃(z)

)︀
.

Given the total number of interactions Nu =
∑︀

i xu,i , xu is assumed to be sampled from
xu | zu, Nu ∼ Mult (Nu, 𝜋𝜃(zu))
The log-likelihood for user u conditioned on the latent representation is

log p𝜃(xu | zu) =
I∑︁

i=1
xu,i log 𝜋𝜃,i(zu).
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MetVAE: Evaluation of the models
Need to have access to number of items chosen by the user for the generative model.
To assess performance, use top-K metrics.
Complete the items selected by an user and compare it to all of the selections using

Recall@n = |relevant items ∩ recommended items|
|recommended items| ;

nDCG@n = DCG@n
IDCG@n ,

where

DCG@n =
n∑︁

i=1
rel(i)/log2(i + 1), and IDCG@n =

|Rn|∑︁
i=1

1/log2(i + 1).

Rn: set of the n relevant items
rel(i): relevance function of the i-th recommended item of the list, equal to 1 if the item
ranked at i is relevant, and 0 else.
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MetVAE: Datasets & Competitors

Three real world datasets: Foursquare [Yuan et al., 2013], Gowalla [Cho et al., 2011],
MovieLens.

Preprocess to binarize them to fit CF task [Liang et al., 2018].

Competitors
I MultiVAE [Liang et al., 2018] a VAE for CF.
I WRMF [Hu et al., 2008] a weighted regularized matrix factorization for implicit feedback

datasets.
I BPR [Rendle et al., 2009] a Bayesian ranking method.
I GlbAvg, a generic naive baseline (recommends the most popular items among all users).
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MetVAE: Results
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Figure: Recommendation scores in terms of Recall @5, Recall @10 and nDCG @100 of the considered
methods on Foursquare, Gowalla and MovieLens datasets. MetVAE shows consistently better results
compared to other methods.
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Conclusions and Outlook

Summary:
Bayesian inference is very promising approach, but it is extremely challenging due to
computational complexity.
Variational inference is a viable solution.
Enriching variational family via normalizing flows leads to very expressive approximations
of posterior.
Enriching VI with MCMC-type transitions can significantly improve the quality.

Areas to grow:
application to Bayesian neural networks;
approximate sampling from pure BNN (MCMC, HMC, ...).
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Thank you for your attention!
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