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Generative modelling



Problem setup

» Training data - a set of objects, e.qg.: Set of objects:

— Photos of animals / people faces / rooms / whatever i |i=1,..N}
— Text

— Audio of speech / music / whatever

— Signals from a high energy physics experiment detector

» Goal: build a model to sample similar data
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Problem setup

» Training data - a set of objects, e.qg.:
— Photos of animals / people faces / rooms / whatever
— Text
— Audio of speech / music / whatever

— Signals from a high energy physics experiment detector

» Goal: build a model to sample similar data

— Learn the population distribution to sample more objects
from it

— (may be done implicitly, i.e. when we can’t evaluate the probability
density, yet can sample from it)
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Set of objects:
{Xi | [ =1, N}

Population PDF:
p(x)

l.e. {x;} arei.i.d.
sampled from p(x)

Learn q(x) ~ p(x) to
sample x’ from g(x)



Possible applications

To name a few:

» Creative professions, e.g.
— Generating textures for 3D modelling, audio samples for music etc.

— Style transfer

» Data privacy

— Publishing samples without disclosing private information from the original data

» Physics and engineering

— Building a deep learning model to reproduce the stochastic output of an accurate but slow
simulator algorithm

Artem Maevskiy, NRU HSE



This Person Does Not Exist

The site that started it all, with the name
that says it all. Created using a style-
based generative adversarial network
(StyleGAN), this website had the tech
community buzzing with excitement and
intrigue and inspired many more sites.

Created by Phillip Wang.

Artem Maevskiy, NRU HSE

This X does not exist

This Cat Does Not Exist

These purr-fect GAN-made cats will
freshen your feeline-gs and make you
wish you could reach through your screen
and cuddle them. Once in a while the cats
have visual deformities due to
imperfections in the model — beware, they
can cause nightmares.

Created by Ryan Hoover.

This Rental Does Not Exist

Why bother trying to look for the perfect
home when you can create one instead?
Just find a listing you like, buy some land,
build it, and then enjoy the rest of your
life.

Created by Christopher Schmidt.

https://thisxdoesnotexist.com/
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Style transfer
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https://junyanz.github.io/CycleGAN/
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Generative models progress

2018

https://twitter.com/goodfellow_ian/status/1084973596236144640
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Generative Adversarial Networks



How can a neural network generate data?




How can a neural network generate data?

Random noize
e.g. multivariate normal

Generated data

Cat image attribution: https://pixabay.com/users/chiemsee2016-1892688/
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How can a neural network generate data?

Random noize
e.g. multivariate normal

Generated data

Neural network

» This makes the generated object being a differentiable function of the network
parameters

Cat image attribution: https://pixabay.com/users/chiemsee2016-1892688/
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How to train such a generator?

» Generated object is a differentiable function of the network parameters

» Need a differentiable measure of similarity between the sets of generated
objects and real ones

— Can optimize with gradient descent

» How to find such a measure?

Artem Maevskiy, et. al.



Adversarial approach
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Generated data

Goodfellow et al., Generative Adversarial Networks,
arXiv:1406.2661 [stat.ML]
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Discriminator network

“Real” data

» Measure of similarity: how well can another neural network (discriminator) tell the

generated objects apart from the real ones

Artem Maevskiy, et. al.



Let’s put it in formulas

» Noise samples:
zi ~ pz(2)
where p, is some simple PDF we can sample from, e.g. (0, II).
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Let’s put it in formulas

» Noise samples:
zi ~ pz(2)
where p, is some simple PDF we can sample from, e.g. (0, II).

» Generated samples:

!/
x; = Gg(z;)
y . L May characterize this loss as
where Gy is the generator network with parameters 6 adversarial: two networks

... , compete against each other
» Discriminator network (with parameters ¢);

returns the probability for x being a réal sample rather than a generated one

» Measure of similarity between th¢ Jenerated and real samples; ~ Probability the sample
was generated

Le = max Ey ) llog D¢(x)] + Ezep () [log(li— D¢(G9 (z)))] — min
¢ g

) 4

, Log-likelihood for discriminator prediction
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Training the networks

Artem Maevskiy, NRU HSE

Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets. The number of
steps to apply to the discriminator, k, is a hyperparameter. We used £ = 1, the least expensive option, in our
experiments.

for number of training iterations do
for £ steps do

e Sample minibatch of m noise samples {z(1), ..., 2(™} from noise prior p,(z).
e Sample minibatch of m examples {z(1),...,2(™)} from data generating distribution
DPdata (w)

e Update the discriminator by ascending its stochastic gradient:

Vo, L 3 [log > (2) +105 (1 - D (c (=)))].

1=1
end for

e Sample minibatch of m noise samples {z1), ..., 2("™)} from noise prior p, (z).
e Update the generator by descending its stochastic gradient:

Vo, 3108 (1-0 (6 (=),

end for
The gradient-based updates can use any standard gradient-based learning rule. We used momen-
tum in our experiments.

https://arxiv.org/abs/1406.2661
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A view on the adversarial loss

» Evolution from classical machine learning to deep learning:

— “Let’s build a model that automatically finds the best features for us”

» Evolution to adversarial loss:

— “Let’s build a model that learns the loss function for us”

L; = mqgix Ex~px) |log D¢(x)] + Ezep () [log (1 — D¢(G9 (Z)))] — mgn

Generator loss is learned by optimising the discriminator

Artem Maevskiy, NRU HSE



Problems with GANs



The optimal discriminator solution

> If we re-write the loss using Pgen,g (x) — the distribution of x" = G4(z), and

expand the expectations as integrals:

L; = m(ng[p(x) log (D¢(x)) + Dgen,p (x) log (1 — D¢(x))] dx
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The optimal discriminator solution

> If we re-write the loss using Pgen,g (x) — the distribution of x" = G4(z), and

expand the expectations as integrals:
L; = ch;;lxj ['p(x) log (D¢(x)) + Dgen,p (x) log (1 — D¢(x))] dx
X

» it's easy to show that mdz;\x is obtained at ¢p*(6) with:

p(x)
p(x) + Pgen,6 (x)

D 4+ 9)(x) =
» So the objective becomes:
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The optimal discriminator solution

> If we re-write the loss using Pgen,g (x) — the distribution of x" = G4(z), and

expand the expectations as integrals:
L; = ch;;lxj ['p(x) log (D¢(x)) + Dgen,p (x) log (1 — D¢(x))] dx
X

» it's easy to show that mdz)ax is obtained at ¢p*(6) with:

p(x)
p(x) + Pgen,6 (x)

D 4+ 9)(x) =
» So the objective becomes:

Pgen,6 (x)
p(x) + Pgen,6 (x)

p(x)
p(x) T Pgen,6 (x)

= —log4 +]S\D(p | pgen,H)

Artem Maevskiy, NRU HSE Jensen-Shannon divergence

Le = Ex-p) [log t Exepgens@ [log



Vanishing gradients

> In case p and Pgen,g have non-overlapping support:

p(x) [ pgenH(x)
L-=E,. lo + [E, lo '
¢ *~p() [ gp(x) T Pgen,6 (x) X~Pgen,o (X) gp(x) T Pgen,6 (x)

Pgen,6 (x)
Pgen,6 (x)

p(x)

= 0 = const
p(x)

= Expeo [108 ] Ex~pgen o) [log

» No meaningful gradient, can’t learn

Artem Maevskiy, NRU HSE



Mode collapse

» Assume at some
point the generator
has learned one of
the modes

» No meaningful
gradients to drive
the solution towards
covering the other

modes

Artem Maevskiy, NRU HSE

X = np.linspace(-10, 10, 300)
p_data = 0.7 * normal(x, 5, 0.8) + 0.3 * normal(x, -4, 1)

p_gen = 1.0 * normal(x, 5, 0.8)

D = p data / (p_data + p_gen)

0.5 - *\ —— p_data(x) [ 1.0
— p_gen(x)

0.4 - 0.8
0.3 A - 0.6
0.2 1 o

0.1 A
- 0.2

0.0 A
I I I I I I I I I 0.0

-10.0 -=7.5 -5.0 —-2.5 0.0 2.5 5.0 7.5 10.0
X

Discriminator output



Wasserstein GAN



Alternative distance measure

» The problems with GANs are mainly due to Jensen-Shannon divergence
providing problematic gradients

» What if we try to find some other measure of distance between real and
generated distributions that doesn’t have these problems?

Artem Maevskiy, NRU HSE



Wasserstein distance

Also called “Earth mover’s distance” (EMD)
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Wasserstein distance

Also called “Earth mover’s distance” (EMD)

» Distributions P(x) and Q(x)
are viewed as describing the

amounts of “dirt” at point x

» We want to convert one
distribution into the other by
moving around some
amounts of dirt

0.25 4

o

20 1

0.05 4

0.00 " T T ; . : :
-6 -4 -2 0 2 4 6 8

» The cost of moving an amount m from x4 to x5 is mX||xy — x4]||

» EMD(P, Q) = minimum total cost of converting P into Q

Artem Maevskiy, NRU HSE



Why is it better?

1.0 1 1 T 1 T 1 I
\ — Density of real

sl —— Density of fake |
' ——  GAN Discriminator
——  WGAN Critic
0.6 + E

—-0.2 Vanishing gradients ]
in regular GAN

_04 ] ] ] ] ] ] ]
-8 -6 -4 -2 0 2 4 6 8

https://arxiv.org/abs/1701.07875

Artem Maevskiy, NRU HSE
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Formal definition

» Say, we have a moving plan y (x4, x,) = 0:

Yy (xq, x2)dx1dx, — how much dirt we're moving from
|x1, x1 + dxq] to [x5, x5 + dx5]
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» Say, we have a moving plan y(x4,x,) = O:

Yy (xq, x2)dx1dx, — how much dirt we're moving from
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Formal definition

» Say, we have a moving plan y(x4,x,) = O:
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Formal definition

» Say, we have a moving plan y(x4,x,) = O:

Yy (xq, x2)dx1dx, — how much dirt we're moving from
|x1, x1 + dxq] to [x5, x5 + dx5]

» Then, the cost of moving from [xq, x; + dx;] t0 [x5, x5 + dx,] is:

|y — x1 || - y(xq, x2)dx1dx;

Interpreting y as a PDF
» and the total cost is: /

¢ = J 22 = x4l - ¥y Cep, x2)dx1dxa = By, xeymy (g ) l1X2 — 24|
X1,X2

» Since we want to convert P to Q, the plan has to satisfy:

J Y (x1, x2)dx1 = Q(x2), j y(x1, x2)dx; = P(x1)
X1 X2
Artem Maevskiy, NRU HSE



Formal definition

» Let ;r be the set of all plans that convert P to Q, i.e.:

T = { y: vy =0, J Y (x1, x2)dx; = Q(x2), f Y (x1, x2)dx, = P(x1) }

X1 X2
» Then, the Wasserstein distance between P and Q is:

EMD(P, Q) = Inf Ey, .,y llxz = x4l
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Formal definition

» Let ;r be the set of all plans that convert P to Q, i.e.:

T = { y: vy =0, J Y (x1, x2)dx; = Q(x2), f Y (x1, x2)dx, = P(x1) }

X1 X2
» Then, the Wasserstein distance between P and Q is:
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Optimization over all transport plans - not too friendly
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Formal definition

» Let ;r be the set of all plans that convert P to Q, i.e.:

T = { y: vy =0, J Y (x1, x2)dx; = Q(x2), f Y (x1, x2)dx, = P(x1) }

X1 X2
» Then, the Wasserstein distance between P and Q is:

EMD(P, Q) = inf By, x,~y [z — 21

/ !
Optimization over all transport plans - not too friendly

» Dual form (Kantorovich-Rubinstein duality):

EMD(P,Q) = sup [E,_pf(x) — Ex_of (x)]
IfllL=1 \, Optimization over Lipschitz-1

, continuous functions actingin X - R
Artem Maevskiy, NRU HSE



Lipschitz continuity

» f is Lipschitz-k continuous if

» there exists a constant k > 0, such that

for all x; and x5:

|f (x1) — fx)| < k- [[xg — x2]]

Artem Maevskiy, NRU HSE
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[intuition behind the dual form]

disclaimer: not a strict
mathematical derivation

EMD(P, Q) = %Ielfr L1, wany | |T1 — T2
Let’s add the following term to this expression:

+inf supEy, 2,5~ Lo f(8) —Eingf(t) — (f(z1) — f(x2))]

T Y~ > —

f(x) — real-valued function These cancel out wheny e«
otherwise supremum over f(x) goes to +o

Therefore, we can remove the y € & condition from the whole expression:

= inf Sup Euy zonny [||Z1 — Z2|| + Esap f(8) — Etng f(t) — (f(z1) — f(22))]

Infimum and supremum operations can be swapped under certain conditions
(satisfied here — see https://vincentherrmann.github.io/blog/wasserstein/ for more detailed info)

Artem Maevskiy, NRU HSE



[intuition behind the dual form]

disclaimer: not a strict
mathematical derivation

= supinf [Eonpf(s) ~ Etngf (t) + Eay eanr [llar — 22l = (£(21) = f(22)]]

f Y R

Consider the following case: [f(a) — f(b)| < |la —b]||, Va, b
We’'ll denote it as: ||f||lr <1

For such case this term is 0

Otherwise the whole expression is -
Therefore we can finally rewrite the whole thing as:

EMD(P,Q) = sup [Ezupf(z) —Eznqf ()]
[ fllz <1

Artem Maevskiy, NRU HSE



WGAN

EMD(P, Q) = ll;ﬁlgl[ExNPf(x) — Eyeof ()]

» The function can be expressed as a
neural net — discriminator (‘critic’ in

the original paper)

https://arxiv.org/abs/1701.07875
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WGAN

EMD(P, Q) = ll;ﬁlgl[ExNPf(x) — Eyeof ()]

» The function can be expressed as a » The expectations can be estimated as
neural net — discriminator (‘critic’ in sample mean

the original paper)

https://arxiv.org/abs/1701.07875
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WGAN

EMD(P,Q) = sup |Ey-pf(x) — Ey_of (x)]

IfllL=1

» The function can be expressed as a
neural net — discriminator (‘critic’ in
the original paper)

» Lipschitz-1 continuity can be
replaced with Lipschitz-k continuity

— In such case we'll estimate kXEMD(P, Q)

Artem Maevskiy, NRU HSE

» The expectations can be estimated as

sample mean

https://arxiv.org/abs/1701.07875
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WGAN

EMD(P, Q) = ll;ﬁlgl[ExNPf(x) — Eyeof ()]

» The function can be expressed as a » The expectations can be estimated as
neural net — discriminator (‘critic’ in sample mean
the original paper)

» Lipschitz-1 continuity can be

replaced with Lipschitz-k continuity We wouldn’t know what k is, but it
doesn’t matter: all we want is to
— In such case we'll estimate kXEMD(P, Q) minimize the EMD!

https://arxiv.org/abs/1701.07875
Artem Maevskiy, NRU HSE
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WGAN

EMD(P, Q) = ll;ﬁlgl[ExNPf(x) — Eyeof ()]

» The function can be expressed as a » The expectations can be estimated as
neural net — discriminator (‘critic’ in sample mean
the original paper)

» Lipschitz-1 continuity can be

replaced with Lipschitz-k continuity We wouldn’t know what k is, but it
doesn’t matter: all we want is to
— In such case we'll estimate kXEMD(P, Q) minimize the EMD!

— (Can be achieved by clipping the weights
of the critic: w — clip(w, —c, ¢) with
some constant ¢

https://arxiv.org/abs/1701.07875
Artem Maevskiy, NRU HSE


https://arxiv.org/abs/1701.07875

WGAN

Algorithm 1 WGAN, our proposed algorithm. All experiments in the paper used
the default values o = 0.00005, ¢ = 0.01, m = 64, n¢ritic = O-

Require: : «, the learning rate. c, the clipping parameter. m, the batch size.
Neritic, the number of iterations of the critic per generator iteration.
Require: : wq, initial critic parameters. 6, initial generator’s parameters.

1: while 6 has not converged do

for t =0, ..., neritic do
Sample {z(M1™  ~ P, a batch from the real data.
Sample {z(V}™ ~ p(z) a batch of prior samples.
guw < Vu [% 2111 fw(x(i)) — % Z:il fw(gO(Z(i))ﬂ
w < w + a - RMSProp(w, g,)
w < clip(w, —¢, ¢)

end for

Sample {9} ~ p(z) a batch of prior samples.

9o + —Vog >ty fu(ge(z7))

11: 6 < 0 — a - RMSProp(0, gs)

12: end while

—_
<

Artem Maevskiy, NRU HSE



WGAN-GP

» Weight clipping makes the critic less
8 Gaussians 25 Gaussians  Swiss Roll
//,\,,iﬁ,‘,ifff

expressive and the training harder to

converge

» Optimal f should satisfy ||Vf]|| = 1 almost
everywhere under P and Q

> Also: [Ifll, <1 < [IVfll <1

» Can replace weight clipping with a

gradient penalty term: X = “[9;1 -lf_ (1 —Oaixz'
GP = AEzp, [(IV:f (D) = D] py o | @ Umiorm(OD
|~
or alternatively (‘'one-sided’ penalty): i x, ~ Q

GP = AEzp, [max(0, [Vsf @)l — 1]

Artem Maevskiy, NRU HSE
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WG A N _G P DCGAN LSGAN WGAN (clipping)  WGAN-GP (ours)

Basehne (G- DCGAN D: DCGAN) _.

This technique allowed
for very deep networks to
be used for GANs

Ol-la er ResNet ¢ nd D

https://arxiv.org/abs/1704.00028
Artem Maevskiy, NRU HSE
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Some notable architectures



Conditional distributions

» It's often necessary to learn not just P(x), but P(x|a)

— E.g. generate the face of a person with a given hair color

» This can be achieved by:

xj=Go(z1) - x5 =0Go(z )
D¢ — D¢(xl-) — D¢ = D¢(xi, Cli)

» |.e. we need to provide this information to the generator and discriminator

Artem Maevskiy, NRU HSE



Conditional distributions

» Simple for fully-connected architectures

: / /
iscriminator

Artem Maevskiy, NRU HSE



PIX2PIX

Labels to Street Scene Labels to Facade 7 BW to Color

input output

Day to Night Edges to Photo

output input output input output

https://arxiv.org/abs/1611.07004
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PIX2PIX

Labels to Street Scene Labels to Facade 7 BW to Color

output

output output

https://arxiv.org/abs/1611.07004

pIX2pix

_.'_.

images generated at https://affinelayer.com/pixsrv/

Artem Maevskiy, NRU HSE
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PIX2PIX

https://arxiv.org/abs/1611.07004 T

L11(G) = Eay 2 [lly = G(z, 2)]|1].

Our final objective is

G* = arg ngn mg,x L.can(G,D) 4+ ALr1(G). )

U-Net
L1 loss term to ]
capture low-frequency i
information
€r—> > > > N =N y
e Discriminator doesn’t need to classifythe | | LI ’_I
entire image >
1

* Instead it ‘convolutionally’ scans smaller
patches of the image and averages the result

Artem Maevskiy, NRU HSE

‘U-Net’ generator
architecture



PIX2PIX

https://arxiv.org/abs/1611.07004 T
£24(G) = Eay 2 llly — Gz, D)1 o
M~ A[H:H:|—> fake
Our final objective is P |
G* = argminmax L.gan (G, D) + \L11(G). 7?:
¢ D x T
U-Net
L1 loss term to No noise input to the generator:
capture low-frequency «The generator simply learned to ignore the noise ...
information Instead we provide noise only in the form of dropout,
applied at both training and test time»
* Discriminator doesn’t need to classifythe | | LI L
entire image >
"y . y |
* Instead it ‘convolutionally’ scans smaller ‘U-Net’ generator

patches of the image and averages the result architecture

Artem Maevskiy, NRU HSE



CycleGAN

Monet Z_ Photos Zebras _ Horses Summer _ Winter

R

Phtoraph ‘7 Monet Cezanne

https://arxiv.org/abs/1703.10593
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CycleGAN

https://arxiv.org/abs/1703.10593

LGAN(Ga Dy, X, Y) — Eprdata(y) [log Dy (y)]
+ Emrvpdata(x) [lOg(l — Dy (G(w))L

Leye(G, F) = Epoppu(a) 1 F(G(2)) — z|1]
+ Eympeaa(n) IG (F(v)) — yll1]-

Artem Maevskiy, NRU HSE

(D)

2)

c ¥ ¥ @
/\ " " - /_\ -
T Y N | T Yy ~__| X Y
; F
X Y X Y cycle-consistency
cycle-consistenc . T @\..--1 - loss
ve loss Rt S\.& > /.\S

L(G,F,Dx,Dy)=Lcax(G,Dy,X,Y)
+ Loan(F, Dx,Y, X)
+ Aoy (G, F),

3)



Progressive Growing of GANs

Latent Latent Latent
v
* _
[ I I ]
[ ]
[ ]
i i [ ]
| | | |
; ' | ]
§ § 1024x1024 |
BE. BR. - 8
. 1 Reals . iReals . iReaIs
. I A 4
D L N 1024x1024 |
L N 5 3
[ ]
[ ]
vV [ ]
D [ 88 | S -
4x4 4x4 4x4
Training progresses >

Figure 1: Our training starts with both the generator (G) and discriminator (D) having a low spa-
tial resolution of 4 x4 pixels. As the training advances, we incrementally add layers to G and D,
thus increasing the spatial resolution of the generated images. All existing layers remain trainable
throughout the process. Here | N x N | refers to convolutional layers operating on NV x N spatial

resolution. This allows stable synthesis in high resolutions and also speeds up training considerably.
One the right we show six example images generated using progressive growing at 1024 x 1024.

Artem Maevskiy, NRU HSE https://arxiv.org/abs/1710.10196
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Progressive Growing of GANs

| 16x16

16x16

16x16

2 %
v | 32x32 I
| l | 32x32 | I
toRGB toRGB toRGB toRGB
l Ta by l
R O S
v 3 ‘
D fromRGB @ fromRGB fromRGB
fror‘nRGBl 32x32 | | 32x32 |
| 0.5x |
l-ayvya
®)
[ 16x16 16x16 |
(a) (b) (c)

Figure 1: Our training starts with both the generator (G) and discriminator (D) having a low spa-
tial resolution of 4 x4 pixels. As the training advances, we incrementally add layers to G and D,
thus increasing the spatial resolution of the generated images. All existing layers remain trainable

throughout the process. Here

N x N

refers to convolutional layers operating on N x NN spatial

resolution. This allows stable synthesis in high resolutions and also speeds up training considerably.
One the right we show six example images generated using progressive growing at 1024 x 1024.

Artem Maevskiy, NRU HSE
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Evaluating generative models



Evaluating generative models

» No single guide to follow

» Approaches are very problem-specific

— E.g. perceived visual quality of generated images vs. quality of a generated dental crown
model (https://arxiv.org/abs/1804.00064)

— Most solutions are adapted to or invented for a given particular task

» We'll mention some approaches

Artem Maevskiy, NRU HSE
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Evaluating generative models

(most obvious thing to do)

» By-eye comparison (if your data allows that)
— Compare individual objects or whole distributions (e.g. in projections)

— There might be no need to do any complicated evaluation if the model results simply look
bad

Artem Maevskiy, NRU HSE



Evaluating generative models

(simple things to do)

» Compare meaningful physical characteristics (if applicable)
— Means, medians, standard deviations, etc.

— Correlations

» Statistical tests (y?, Kolmogorov-Smirnov, etc.)

— between individual dimensions or projections

Artem Maevskiy, NRU HSE



Additional classifier

» Train an independent model (e.g. xgboost) to distringuish real and fake
samples

» Evaluate your GAN by checking the classifier’s score (e.g. ROC AUC)
» Pros:

— An objective quality measure
» Cons:
— Resource consuming

— Requires hyper-parameter tuning

— May get picky to things that are not important

Artem Maevskiy, NRU HSE



Inception score

» Introduced in https://arxiv.org/abs/1606.03498

» Apply the Inception model (pre-trained image classifier) to obtain the
conditional label distribution p(y|x) for each image x

— this should be low-entropy (the classifier should be certain)

» Calculate marginal p(y) = [ p(y|x = G(2))p(2)dz
— this should be high-entropy (diversity of samples)

» Combining these two requirements:

IS = exp [IEx[KL(p(ylx) | p(y))]]

Artem Maevskiy, NRU HSE
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Fréchet inception distance (FID score)

» Introduced in https://arxiv.org/abs/1706.08500

» One of the drawbacks of IS is that it doesn’t care about the true distribution

» Instead one can compare distributions of activations at some Inception layer
(originally — last pooling layer)

» The authors proposed calculating the Fréchet (aka Wasserstein-2) distance

» Distance between multivariate Gaussian approximations:

FID = [|ur — ptg|* +Tr [2, + Zg — 2(2,29) ]

Artem Maevskiy, NRU HSE
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Precision and Recal distance (PRD)

Definition 1. For o, 8 € (0, 1], the probability distribution Q) has precision « at recall B w.r.t. P if
there exist distributions pu, vp and vg such that

Decomposition with P=Bu+(1-=R8vp and =au+ (1 —a)vo. (3)
e R

Definition 2. The set of attainable pairs of precision and recall of a distribution () w.r.t. a distribution
P is denoted by PRD(Q, P) and it consists of all (a, 3) satisfying Definition I and the pair (0, 0).

P-_-._-_-. mm N

° mmmm BN ==
(a) (b) (c) (d) (e) ()
Figure 2: Intuitive examples of P and Q.

« The authors provide an algorithm to
calculate it for discrete distributions

* They convert Inception activations to 8 8 8 5 g 8
discrete distribution using k-means . l H -
clustering B
(a) (b) (c) (d) (e) (f)

Figure 3: PRD(Q), P) for the examples above.
https://arxiv.org/abs/1806.00035

Artem Maevskiy, NRU HSE


https://arxiv.org/abs/1806.00035

More metrics...

» An extensive comparison of a

large variety of measures:
— https://arxiv.org/abs/1802.03446

Measure

Description

Artem Maevskiy, NRU HSE

Quantitative

. Average Log-likelihood [18, 22|

2. Coverage Metric [33]

3. Inception Score (IS) [3]

4. Modified Inception Score (m-IS) [34]

5. Mode Score (MS) [35]

6. AM Score [36]

7. Fréchet Inception Distance (FID) [37]
8. Maximum Mean Discrepancy (MMD)
(38]

9. The Wasserstein Critic [39]

10. Birthday Paradox Test [27]

11. Classifier Two Sample Test (C2ST) [40]
12. Classification Performance [1, 15]

13. Boundary Distortion [42]

14. Number of Statistically-Different Bins

(NDB) [43]

15
16

. Image Retrieval Performance [44]
. Generative Adversarial Metric (GAM)

31]

17

. Tournament Win Rate and Skill

Rating [45]

18

. Normalized Relative Discriminative

Score (NRDS) [32]

19

. Adversarial Accuracy and Divergence

[46]

. Geometry Score [47]

. Reconstruction Error [48]

. Image Quality Measures [49, 50, 51]
. Low-level Image Statistics [52, 53|

. Precision, Recall and F; score [23]

e Log likelihood of explaining realworld held out/test data using a density estimated from the generated data
(e.g. using KDE or Parzen window estimation). L = % >, log Proder (%)

e The probability mass of the true data “covered” by the model distribution
C = Pdata(dpmodel > t) with ¢ such that Pmodel(dpnlodel > t) =0.95

e KLD between conditional and marginal label distributions over generated data. exp (Ex [KL (p (y | x) || p (¥))])

o Encourages diversity within images sampled from a particular category. exp(Ex, [Ex; [(KL(P(y[x:)|[P(y]x;))]])

e Similar to IS but also takes into account the prior dist;ibution of the labels over real data.
exp (Ex [KL (p(v | ) || p (y17"))] ~KL (p(3) || p (4'*"™)))

e Takes into account the KLD between distributions of training labels vs. predicted labels,
as well as the entropy of predictions. KL(p(y*™#) || p(y))+Ex [H (yx)]

o Wasserstein-2 distance between multi-variate Gaussians fitted to data embedded into a feature space
1
FID(r,9) = |lpr — pgll3 + Tr(Er + X9 — 2(5,:59)2)

e Measures the dissimilarity between two probability distributions P and P, using samples drawn independently
from each distribution. My (Pr, Py) = Ex s/ np, [k(%,X)] = 2Ex~p, y~p, [K(%, Y)] + By o p, [k(y, ¥)]

e The critic (e.g. an NN) is trained to produce high values at real samples and low values at generated samples
W (xtest, Xg) = 57 S0 Fxuestli]) — 3 S50 F(xq[i))

e Measures the support size of a discrete (continuous) distribution by counting the duplicates (near duplicates)

e Answers whether two samples are drawn from the same distribution (e.g. by training a binary classifier)

e An indirect technique for evaluating the quality of unsupervised representations
(e.g. feature extraction; FCN score). See also the GAN Quality Index (GQI) [41].

e Measures diversity of generated samples and covariate shift using classification methods.

e Given two sets of samples from the same distribution, the number of samples that
fall into a given bin should be the same up to sampling noise

e Measures the distributions of distances to the nearest neighbors of some query images (i.e. diversity)

e Compares two GANs by having them engaged in a battle against each other by swapping discriminators
or generators. p(xly = 1; M))/p(xly = 1; M5) = (p(y = 1|x; D1)p(x; G2))/ (p(y = 1|x; D2)p(x; G1))

e Implements a tournament in which a player is either a discriminator that attempts to distinguish between
real and fake data or a generator that attempts to fool the discriminators into accepting fake data as real.

e Compares n GANs based on the idea that if the generated samples are closer to real ones,
more epochs would be needed to distinguish them from real samples.

e Adversarial Accuracy. Computes the classification accuracies achieved by the two classifiers, one trained
on real data and another on generated data, on a labeled validation set to approximate Pg(y|x) and Pr(y|x).
Adversarial Divergence: Computes KIL(Py(y|x), Pr(y|x))

e Compares geometrical properties of the underlying data manifold between real and generated data.

e Measures the reconstruction error (e.g. L2 norm) between a test image and its closest
generated image by optimizing for z (i.e. min,||G(z) — x(*est)||2)

e Evaluates the quality of generated images using measures such as SSIM, PSNR, and sharpness difference

e Evaluates how similar low-level statistics of generated images are to those of natural scenes
in terms of mean power spectrum, distribution of random filter responses, contrast distribution, etc.

e These measures are used to quantify the degree of overfitting in GANSs, often over toy datasets.

Qualitative

. Nearest Neighbors

. Rapid Scene Categorization [18]

. Preference Judgment [54, 55, 56, 57|
. Mode Drop and Collapse [58, 59]

. Network Internals [1, 60, 61, 62, 63, 64]

e To detect overfitting, generated samples are shown next to their nearest neighbors in the training set

e In these experiments, participants are asked to distinguish generated samples from real images
in a short presentation time (e.g. 100 ms); i.e. real v.s fake

e Participants are asked to rank models in terms of the fidelity of their generated images (e.g. pairs, triples)

e Over datasets with known modes (e.g. a GMM or a labeled dataset), modes are computed as by measuring
the distances of generated data to mode centers

e Regards exploring and illustrating the internal representation and dynamics of models (e.g. space continuity)
as well as visualizing learned features



https://arxiv.org/abs/1802.03446

Summary

» GANSs - a rather broad field of ML

— Lots of different architectures, this lecture doesn’t pretend to be comprehensive
» May say, that in GANs we ‘learn’ the loss for the generator

» Wasserstein GAN is a useful technique that allows really deep networks to be
used for data generation

» Finding universal quality evaluation method is rather an open question

Artem Maevskiy, NRU HSE



GANs for fast simulation

K. Matchev, P. Shyamsundar, Uncertainties associated with GAN-generated datasets in high energy physics,

» Quite a developing field!

» Important note: one cannot
increase the statistics with
GANSs

» GANSs rather memorize and
interpolate the available
data

Artem Maevskiy, et. al.
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