Generative Adversarial Networks

Second HSE-Yandex autumn school on generative models

24-27 November 2020 NRU HSE, Moscow

Artem Maevskiy

National Research University Higher School of Economics

Generative modelling

Problem setup

- Training data a set of objects, e.g.:
 - Photos of animals / people faces / rooms / whatever
 - Text
 - Audio of speech / music / whatever
 - Signals from a high energy physics experiment detector
- Goal: build a model to sample similar data

Set of objects: $\{x_i \mid i = 1, ... N\}$

Problem setup

- Training data a set of objects, e.g.:
 - Photos of animals / people faces / rooms / whatever
 - Text
 - Audio of speech / music / whatever
 - Signals from a high energy physics experiment detector
- Goal: build a model to sample similar data

Set of objects: $\{x_i \mid i = 1, ... N\}$

Population PDF: p(x)

I.e. $\{x_i\}$ are i.i.d. sampled from p(x)

Problem setup

- Training data a set of objects, e.g.:
 - Photos of animals / people faces / rooms / whatever
 - Text
 - Audio of speech / music / whatever
 - Signals from a high energy physics experiment detector
- Goal: build a model to sample similar data
 - Learn the **population distribution** to **sample more objects** from it
 - (may be done implicitly, i.e. when we can't evaluate the probability density, yet can sample from it)

Set of objects: $\{x_i \mid i = 1, ... N\}$

Population PDF: p(x)

I.e. $\{x_i\}$ are i.i.d. sampled from p(x)

Learn $q(x) \sim p(x)$ to sample x' from q(x)

Possible applications

To name a few:

- Creative professions, e.g.
 - Generating textures for 3D modelling, audio samples for music etc.
 - Style transfer
- Data privacy
 - Publishing samples without disclosing private information from the original data
- Physics and engineering
 - Building a deep learning model to reproduce the stochastic output of an accurate but slow simulator algorithm

This X does not exist

This Person Does Not Exist

The site that started it all, with the name that says it all. Created using a stylebased generative adversarial network (StyleGAN), this website had the tech community buzzing with excitement and intrigue and inspired many more sites.

This Cat Does Not Exist

These purr-fect GAN-made cats will freshen your feeline-gs and make you wish you could reach through your screen and cuddle them. Once in a while the cats have visual deformities due to imperfections in the model – beware, they can cause nightmares.

This Rental Does Not Exist

Why bother trying to look for the perfect home when you can create one instead? Just find a listing you like, buy some land, build it, and then enjoy the rest of your life.

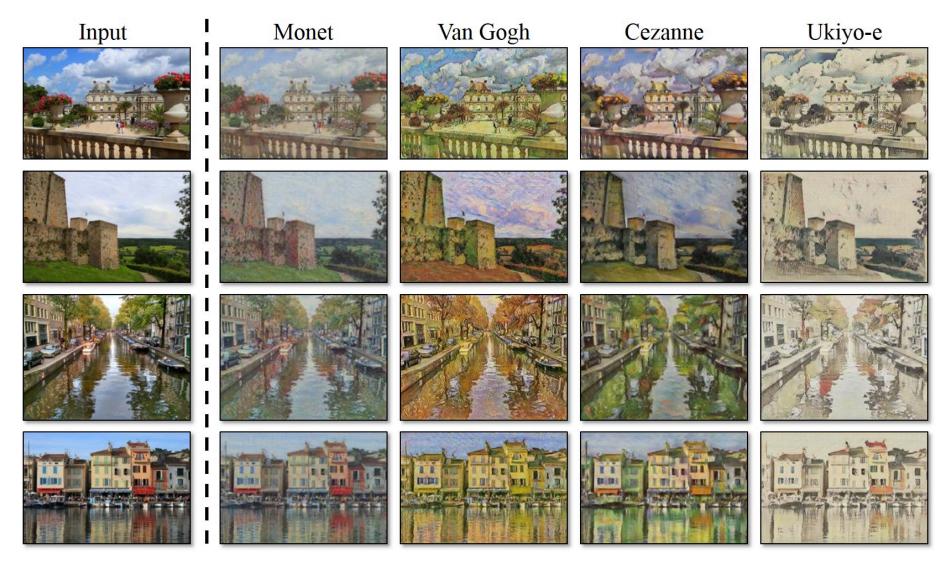
Created by Phillip Wang.

Created by Ryan Hoover.

Created by Christopher Schmidt.

https://thisxdoesnotexist.com/

Style transfer



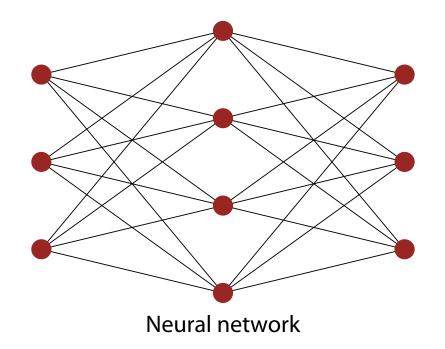
https://junyanz.github.io/CycleGAN/

Generative models progress

https://twitter.com/goodfellow_ian/status/1084973596236144640

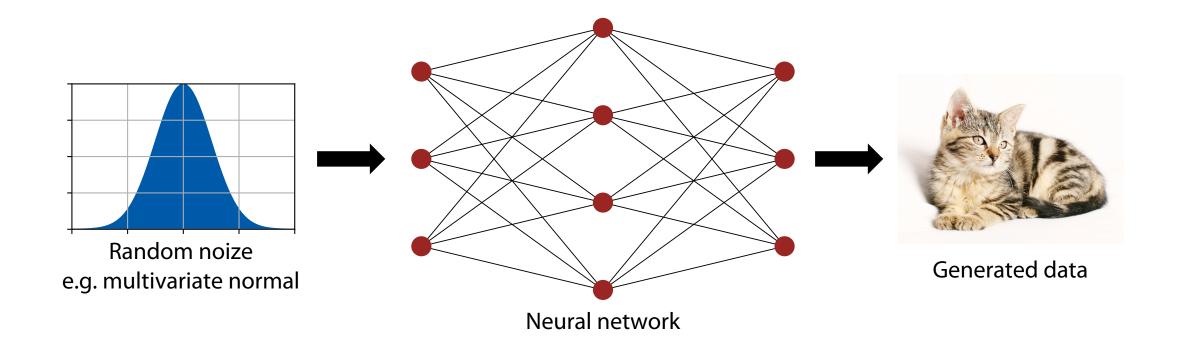
Generative Adversarial Networks

How can a neural network generate data?

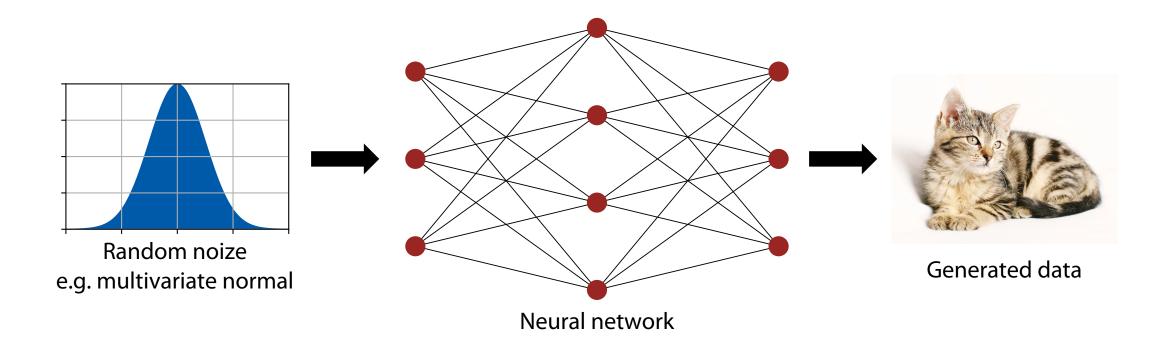


Artem Maevskiy, et. al.

How can a neural network generate data?



How can a neural network generate data?



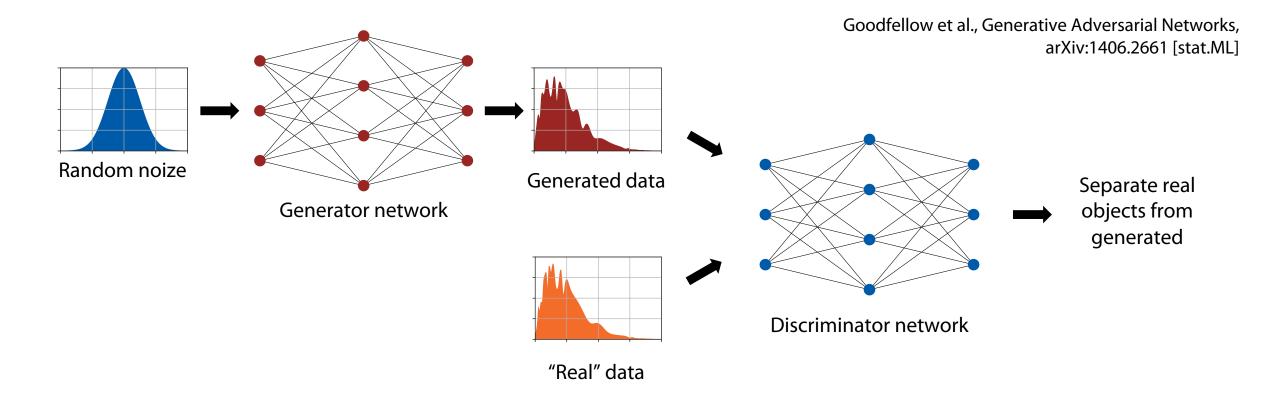
This makes the generated object being a differentiable function of the network parameters

Artem Maevskiy, et. al.

How to train such a generator?

- Generated object is a differentiable function of the network parameters
- Need a differentiable measure of similarity between the sets of generated objects and real ones
 - Can optimize with gradient descent
- How to find such a measure?

Adversarial approach



Measure of similarity: how well can another neural network (discriminator) tell the generated objects apart from the real ones

Artem Maevskiy, et. al.

Noise samples:

 $z_i \sim p_z(z)$

where p_z is some simple PDF we can sample from, e.g. $\mathcal{N}(0, \mathbb{I})$.

Noise samples:

 $z_i \sim p_z(z)$

where p_z is some simple PDF we can sample from, e.g. $\mathcal{N}(0, \mathbb{I})$.

Generated samples:

$$x_i' = G_\theta(z_i)$$

where G_{θ} is the generator network with parameters θ .

Noise samples:

 $z_i \sim p_z(z)$

where p_z is some simple PDF we can sample from, e.g. $\mathcal{N}(0, \mathbb{I})$.

Generated samples:

$$x_i' = G_\theta(z_i)$$

where G_{θ} is the generator network with parameters θ .

• Discriminator network (with parameters ϕ):

 $D_{\phi}(x)$ returns the probability for x being a real sample rather than a generated one

Noise samples:

 $z_i \sim p_z(z)$

where p_z is some simple PDF we can sample from, e.g. $\mathcal{N}(0, \mathbb{I})$.

Generated samples:

$$x_i' = G_\theta(z_i)$$

where G_{θ} is the generator network with parameters θ .

• Discriminator network (with parameters ϕ):

returns the probability for x being a real sample rather than a generated one

 $D_{\phi}(x)$

Measure of similarity between the generated and real samples:

$$L_{G} = \max_{\phi} \mathbb{E}_{x \sim p(x)} \left[\log D_{\phi}(x) \right] + \mathbb{E}_{z \sim p_{z}(z)} \left[\log \left(1 - D_{\phi} (G_{\theta}(z)) \right) \right] \to \min_{\theta}$$

Noise samples:

 $z_i \sim p_z(z)$

where p_z is some simple PDF we can sample from, e.g. $\mathcal{N}(0, \mathbb{I})$.

Generated samples:

$$x_i' = G_\theta(z_i)$$

where G_{θ} is the generator network with parameters θ .

• Discriminator network (with parameters ϕ):

returns the probability for x being a real sample rather than a generated one

 $D_{\phi}(x)$

• Measure of similarity between the generated and real samples: $L_{G} = \max_{\phi} \mathbb{E}_{x \sim p(x)} \left[\log D_{\phi}(x) \right] + \mathbb{E}_{z \sim p_{z}(z)} \left[\log \left(1 - D_{\phi} (G_{\theta}(z)) \right) \right] \xrightarrow{\text{Probability the sample}}{\rightarrow} \min_{\theta}$

Artem Maevskiy, NRU HSE

Noise samples:

 $z_i \sim p_z(z)$

where p_z is some simple PDF we can sample from, e.g. $\mathcal{N}(0, \mathbb{I})$.

Generated samples:

$$x_i' = G_\theta(z_i)$$

where G_{θ} is the generator network with parameters θ .

• Discriminator network (with parameters ϕ):

returns the probability for x being a real sample rather than a generated one

 $D_{\phi}(x)$

Measure of similarity between the generated and real samples: Probability the sample was generated

$$L_{G} = \max_{\phi} \mathbb{E}_{x \sim p(x)} \left[\log D_{\phi}(x) \right] + \mathbb{E}_{z \sim p_{z}(z)} \left[\log \left(1 - D_{\phi} (G_{\theta}(z)) \right) \right] \to \min_{\theta}$$

Noise samples:

 $z_i \sim p_z(z)$

where p_z is some simple PDF we can sample from, e.g. $\mathcal{N}(0, \mathbb{I})$.

Generated samples:

$$x_i' = G_\theta(z_i)$$

where G_{θ} is the generator network with parameters θ

• Discriminator network (with parameters ϕ):

May characterize this loss as **adversarial**: two networks compete against each other

returns the probability for x being a real sample rather than a generated one

 $D_{\phi}(x)$

Measure of similarity between the generated and real samples:

Probability the sample was generated

$$L_{G} = \max_{\phi} \mathbb{E}_{x \sim p(x)} \left[\log D_{\phi}(x) \right] + \mathbb{E}_{z \sim p_{z}(z)} \left[\log \left(1 - D_{\phi} (G_{\theta}(z)) \right) \right] \to \min_{\theta}$$

Training the networks

Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets. The number of steps to apply to the discriminator, k, is a hyperparameter. We used k = 1, the least expensive option, in our experiments.

for number of training iterations do

for k steps do

- Sample minibatch of m noise samples $\{\boldsymbol{z}^{(1)}, \ldots, \boldsymbol{z}^{(m)}\}$ from noise prior $p_g(\boldsymbol{z})$.
- Sample minibatch of m examples $\{x^{(1)}, \ldots, x^{(m)}\}$ from data generating distribution $p_{\text{data}}(x)$.
- Update the discriminator by ascending its stochastic gradient:

$$\nabla_{\theta_d} \frac{1}{m} \sum_{i=1}^m \left[\log D\left(\boldsymbol{x}^{(i)} \right) + \log \left(1 - D\left(G\left(\boldsymbol{z}^{(i)} \right) \right) \right) \right].$$

end for

- Sample minibatch of m noise samples $\{z^{(1)}, \ldots, z^{(m)}\}$ from noise prior $p_g(z)$.
- Update the generator by descending its stochastic gradient:

$$abla_{\theta_g} rac{1}{m} \sum_{i=1}^m \log\left(1 - D\left(G\left(\boldsymbol{z}^{(i)}\right)\right)\right).$$

end for

The gradient-based updates can use any standard gradient-based learning rule. We used momentum in our experiments.

A view on the adversarial loss

- Evolution from classical machine learning to deep learning:
 - "Let's build a model that automatically finds the best features for us"
- Evolution to adversarial loss:
 - "Let's build a model that learns the loss function for us"

$$L_{G} = \max_{\phi} \mathbb{E}_{x \sim p(x)} \left[\log D_{\phi}(x) \right] + \mathbb{E}_{z \sim p_{z}(z)} \left[\log \left(1 - D_{\phi} (G_{\theta}(z)) \right) \right] \to \min_{\theta}$$

Generator loss is learned by optimising the discriminator

Problems with GANs

► If we re-write the loss using p_{gen,θ}(x) – the distribution of x' = G_θ(z), and expand the expectations as integrals:

$$L_G = \max_{\phi} \int_{x} \left[p(x) \log \left(D_{\phi}(x) \right) + p_{\text{gen},\theta}(x) \log \left(1 - D_{\phi}(x) \right) \right] dx$$

If we re-write the loss using p_{gen,θ}(x) − the distribution of x' = G_θ(z), and expand the expectations as integrals:

$$L_G = \max_{\phi} \int_{x} \left[p(x) \log \left(D_{\phi}(x) \right) + p_{\text{gen},\theta}(x) \log \left(1 - D_{\phi}(x) \right) \right] dx$$

• it's easy to show that \max_{ϕ} is obtained at $\phi^*(\theta)$ with:

$$D_{\phi^*(\theta)}(x) = \frac{p(x)}{p(x) + p_{\text{gen},\theta}(x)}$$

► If we re-write the loss using p_{gen,θ}(x) – the distribution of x' = G_θ(z), and expand the expectations as integrals:

$$L_G = \max_{\phi} \int_{x} \left[p(x) \log \left(D_{\phi}(x) \right) + p_{\text{gen},\theta}(x) \log \left(1 - D_{\phi}(x) \right) \right] dx$$

• it's easy to show that \max_{ϕ} is obtained at $\phi^*(\theta)$ with:

$$D_{\phi^*(\theta)}(x) = \frac{p(x)}{p(x) + p_{\text{gen},\theta}(x)}$$

So the objective becomes:

$$L_G = \mathbb{E}_{x \sim p(x)} \left[\log \frac{p(x)}{p(x) + p_{\text{gen},\theta}(x)} \right] + \mathbb{E}_{x \sim p_{\text{gen},\theta}(x)} \left[\log \frac{p_{\text{gen},\theta}(x)}{p(x) + p_{\text{gen},\theta}(x)} \right]$$

► If we re-write the loss using p_{gen,θ}(x) – the distribution of x' = G_θ(z), and expand the expectations as integrals:

$$L_G = \max_{\phi} \int_{x} \left[p(x) \log \left(D_{\phi}(x) \right) + p_{\text{gen},\theta}(x) \log \left(1 - D_{\phi}(x) \right) \right] dx$$

• it's easy to show that \max_{ϕ} is obtained at $\phi^*(\theta)$ with:

$$D_{\phi^*(\theta)}(x) = \frac{p(x)}{p(x) + p_{\text{gen},\theta}(x)}$$

So the objective becomes:

$$L_{G} = \mathbb{E}_{x \sim p(x)} \left[\log \frac{p(x)}{p(x) + p_{\text{gen},\theta}(x)} \right] + \mathbb{E}_{x \sim p_{\text{gen},\theta}(x)} \left[\log \frac{p_{\text{gen},\theta}(x)}{p(x) + p_{\text{gen},\theta}(x)} \right]$$
$$= -\log 4 + JSD(p || p_{gen,\theta})$$

Artem Maevskiy, NRU HSE

Vanishing gradients

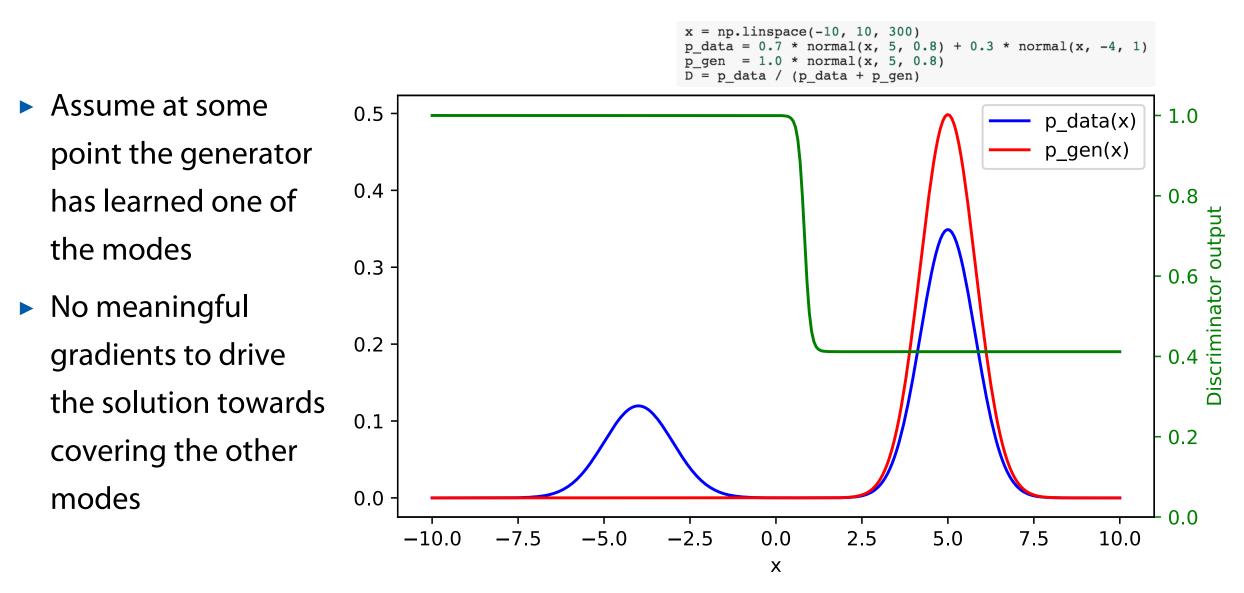
► In case p and $p_{\text{gen},\theta}$ have non-overlapping support:

$$L_{G} = \mathbb{E}_{x \sim p(x)} \left[\log \frac{p(x)}{p(x) + p_{\text{gen},\theta}(x)} \right] + \mathbb{E}_{x \sim p_{\text{gen},\theta}(x)} \left[\log \frac{p_{\text{gen},\theta}(x)}{p(x) + p_{\text{gen},\theta}(x)} \right]$$
$$= \mathbb{E}_{x \sim p(x)} \left[\log \frac{p(x)}{p(x)} \right] + \mathbb{E}_{x \sim p_{\text{gen},\theta}(x)} \left[\log \frac{p_{\text{gen},\theta}(x)}{p_{\text{gen},\theta}(x)} \right] = 0 = const$$

No meaningful gradient, can't learn

Artem Maevskiy, NRU HSE

Mode collapse



Wasserstein GAN

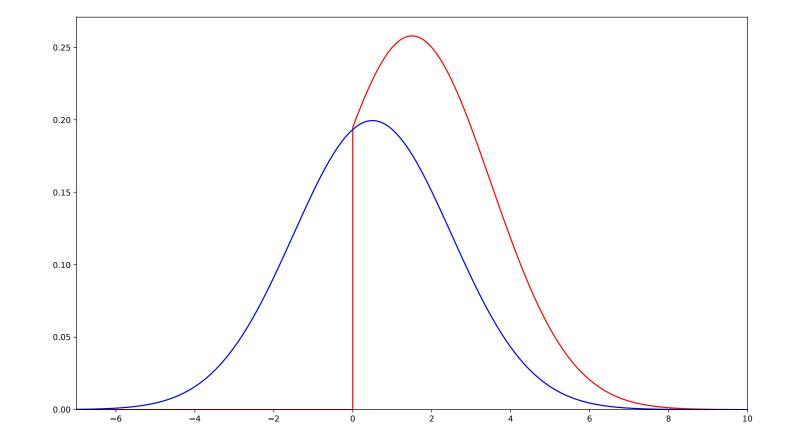
Alternative distance measure

- The problems with GANs are mainly due to Jensen–Shannon divergence providing problematic gradients
- What if we try to find some other measure of distance between real and generated distributions that doesn't have these problems?

Wasserstein distance

Also called "Earth mover's distance" (EMD)

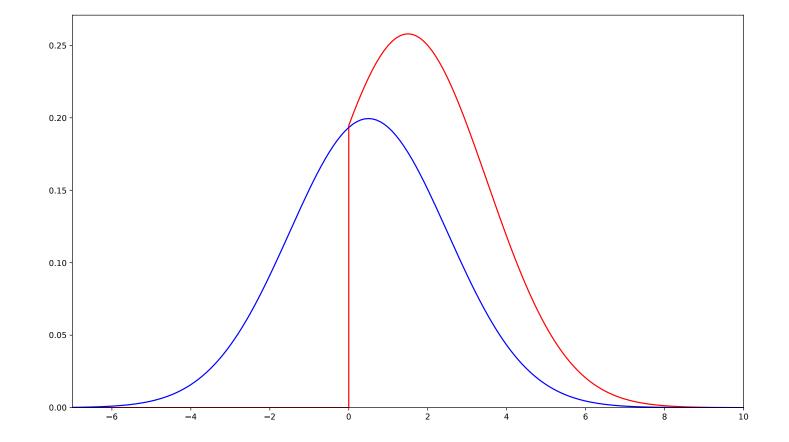
Distributions P(x) and Q(x)
 are viewed as describing the
 amounts of "dirt" at point x



Wasserstein distance

Also called "Earth mover's distance" (EMD)

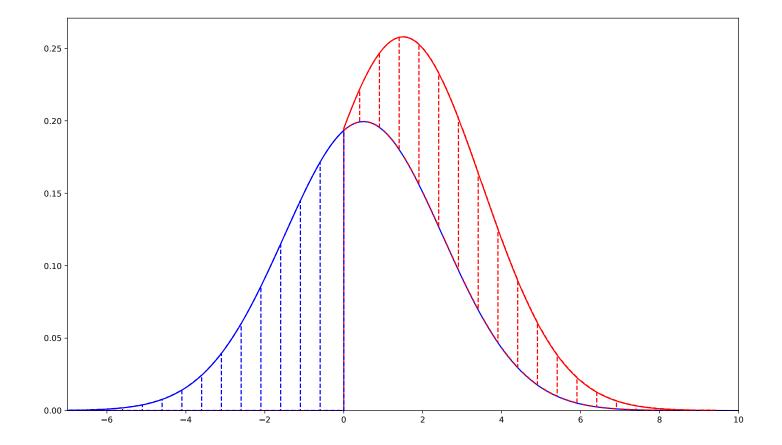
- Distributions P(x) and Q(x) are viewed as describing the amounts of "dirt" at point x
- We want to convert one distribution into the other by moving around some amounts of dirt



Wasserstein distance

Also called "Earth mover's distance" (EMD)

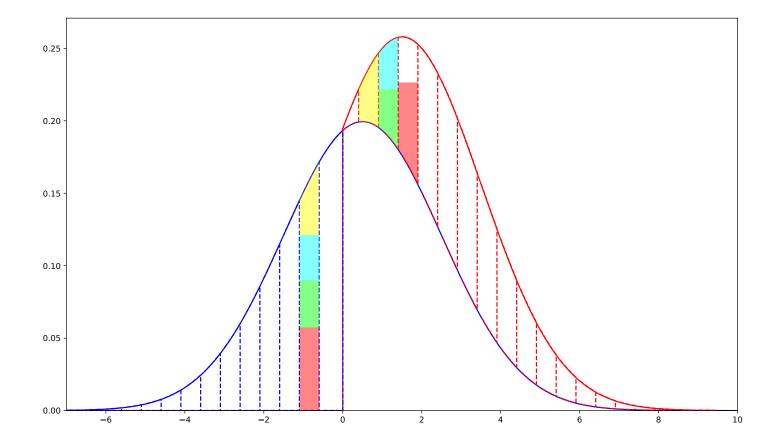
- Distributions P(x) and Q(x) are viewed as describing the amounts of "dirt" at point x
- We want to convert one distribution into the other by moving around some amounts of dirt



Wasserstein distance

Also called "Earth mover's distance" (EMD)

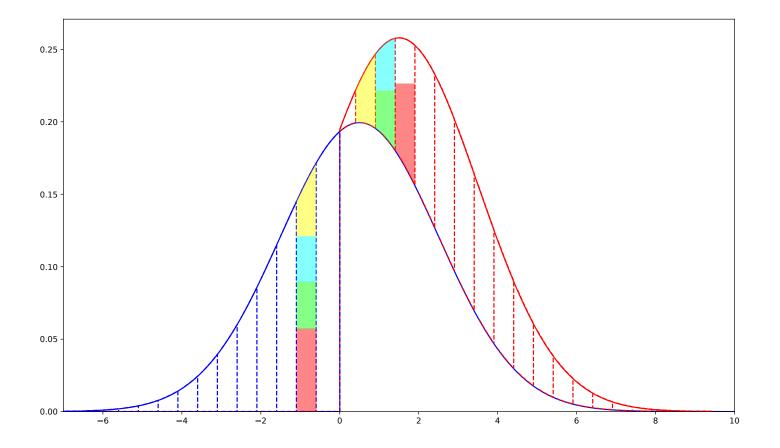
- Distributions P(x) and Q(x) are viewed as describing the amounts of "dirt" at point x
- We want to convert one distribution into the other by moving around some amounts of dirt



Wasserstein distance

Also called "Earth mover's distance" (EMD)

- Distributions P(x) and Q(x) are viewed as describing the amounts of "dirt" at point x
- We want to convert one distribution into the other by moving around some amounts of dirt

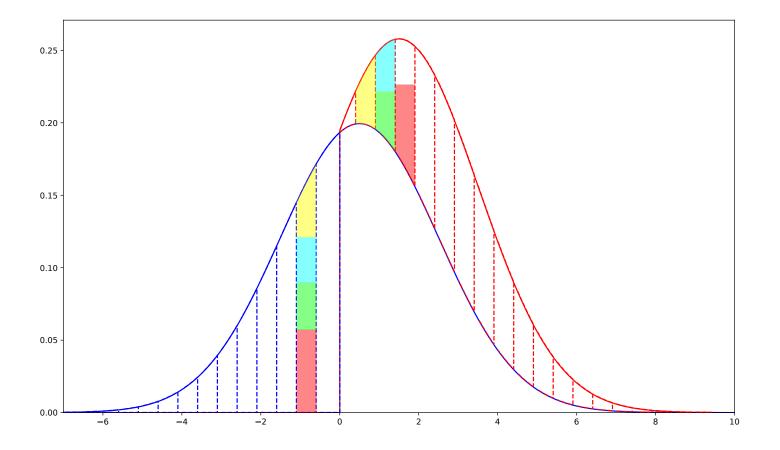


• The cost of moving an amount m from x_1 to x_2 is $m \times ||x_2 - x_1||$

Wasserstein distance

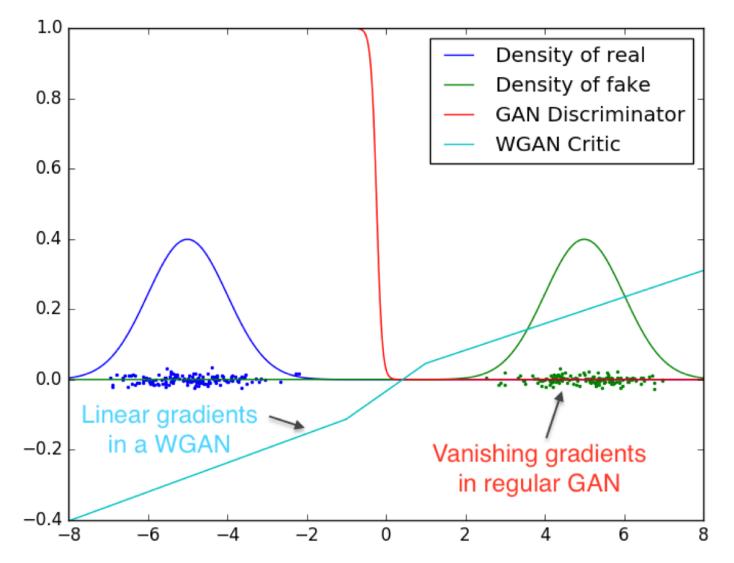
Also called "Earth mover's distance" (EMD)

- Distributions P(x) and Q(x) are viewed as describing the amounts of "dirt" at point x
- We want to convert one distribution into the other by moving around some amounts of dirt



- The cost of moving an amount m from x_1 to x_2 is $m \times ||x_2 x_1||$
- EMD(P, Q) = minimum total cost of converting P into Q

Why is it better?



https://arxiv.org/abs/1701.07875

Artem Maevskiy, NRU HSE

Say, we have a moving plan $\gamma(x_1, x_2) \ge 0$:

 $\gamma(x_1, x_2)dx_1dx_2$ - how much dirt we're moving from [$x_1, x_1 + dx_1$] to [$x_2, x_2 + dx_2$]

Say, we have a moving plan $\gamma(x_1, x_2) \ge 0$:

 $\gamma(x_1, x_2)dx_1dx_2$ - how much dirt we're moving from [$x_1, x_1 + dx_1$] to [$x_2, x_2 + dx_2$]

► Then, the cost of moving from $[x_1, x_1 + dx_1]$ to $[x_2, x_2 + dx_2]$ is:

 $||x_2 - x_1|| \cdot \gamma(x_1, x_2) dx_1 dx_2$

- ► Say, we have a moving plan $\gamma(x_1, x_2) \ge 0$: $\gamma(x_1, x_2)dx_1dx_2 -$ how much dirt we're moving from $[x_1, x_1 + dx_1]$ to $[x_2, x_2 + dx_2]$
- ► Then, the cost of moving from $[x_1, x_1 + dx_1]$ to $[x_2, x_2 + dx_2]$ is:

 $||x_2 - x_1|| \cdot \gamma(x_1, x_2) dx_1 dx_2$

and the total cost is:

$$C = \int_{x_1, x_2} \|x_2 - x_1\| \cdot \gamma(x_1, x_2) dx_1 dx_2$$

- Say, we have a moving plan $\gamma(x_1, x_2) \ge 0$: $\gamma(x_1, x_2)dx_1dx_2 - \text{how much dirt we're moving from}$ $[x_1, x_1 + dx_1] \text{ to } [x_2, x_2 + dx_2]$
- ► Then, the cost of moving from $[x_1, x_1 + dx_1]$ to $[x_2, x_2 + dx_2]$ is:

 $||x_2 - x_1|| \cdot \gamma(x_1, x_2) dx_1 dx_2$

• Interpreting γ as a PDF

and the total cost is:

$$C = \int_{x_1, x_2} \|x_2 - x_1\| \cdot \gamma(x_1, x_2) dx_1 dx_2 = \mathbb{E}_{x_1, x_2 \sim \gamma(x_1, x_2)} \|x_2 - x_1\|$$

- Say, we have a moving plan $\gamma(x_1, x_2) \ge 0$: $\gamma(x_1, x_2)dx_1dx_2 - \text{how much dirt we're moving from}$ $[x_1, x_1 + dx_1] \text{ to } [x_2, x_2 + dx_2]$
- ► Then, the cost of moving from $[x_1, x_1 + dx_1]$ to $[x_2, x_2 + dx_2]$ is:

 $||x_2 - x_1|| \cdot \gamma(x_1, x_2) dx_1 dx_2$

Interpreting γ as a PDF

and the total cost is:

J

$$C = \int_{x_1, x_2} \|x_2 - x_1\| \cdot \gamma(x_1, x_2) dx_1 dx_2 = \mathbb{E}_{x_1, x_2 \sim \gamma(x_1, x_2)} \|x_2 - x_1\|$$

► Since we want to convert *P* to *Q*, the plan has to satisfy:

$$\int_{x_1} \gamma(x_1, x_2) dx_1 = Q(x_2), \qquad \qquad \int_{x_2} \gamma(x_1, x_2) dx_2 = P(x_1)$$

Artem Maevskiy, NRU HSE

• Let π be the set of all plans that convert *P* to *Q*, i.e.:

$$\pi = \left\{ \begin{array}{ll} \gamma \colon & \gamma \ge 0, \\ & \int_{x_1} \gamma(x_1, x_2) dx_1 = Q(x_2), \\ & \int_{x_2} \gamma(x_1, x_2) dx_2 = P(x_1) \end{array} \right\}$$

► Then, the Wasserstein distance between *P* and *Q* is:

$$\mathrm{EMD}(P,Q) = \inf_{\gamma \in \pi} \mathbb{E}_{x_1, x_2 \sim \gamma} \| x_2 - x_1 \|$$

• Let π be the set of all plans that convert *P* to *Q*, i.e.:

$$\pi = \left\{ \gamma: \quad \gamma \ge 0, \qquad \int_{x_1} \gamma(x_1, x_2) dx_1 = Q(x_2), \qquad \int_{x_2} \gamma(x_1, x_2) dx_2 = P(x_1) \right\}$$

► Then, the Wasserstein distance between *P* and *Q* is:

$$\mathrm{EMD}(P,Q) = \inf_{\gamma \in \pi} \mathbb{E}_{x_1, x_2 \sim \gamma} ||x_2 - x_1||$$

Optimization over all transport plans – not too friendly

• Let π be the set of all plans that convert *P* to *Q*, i.e.:

$$\pi = \left\{ \gamma: \quad \gamma \ge 0, \qquad \int_{x_1} \gamma(x_1, x_2) dx_1 = Q(x_2), \qquad \int_{x_2} \gamma(x_1, x_2) dx_2 = P(x_1) \right\}$$

► Then, the Wasserstein distance between *P* and *Q* is:

$$\mathrm{EMD}(P,Q) = \inf_{\gamma \in \pi} \mathbb{E}_{x_1, x_2 \sim \gamma} \|x_2 - x_1\|$$

Optimization over all transport plans – not too friendly

Dual form (Kantorovich-Rubinstein duality):

$$\mathrm{EMD}(P,Q) = \sup_{\|f\|_{L} \le 1} \left[\mathbb{E}_{x \sim P} f(x) - \mathbb{E}_{x \sim Q} f(x) \right]$$

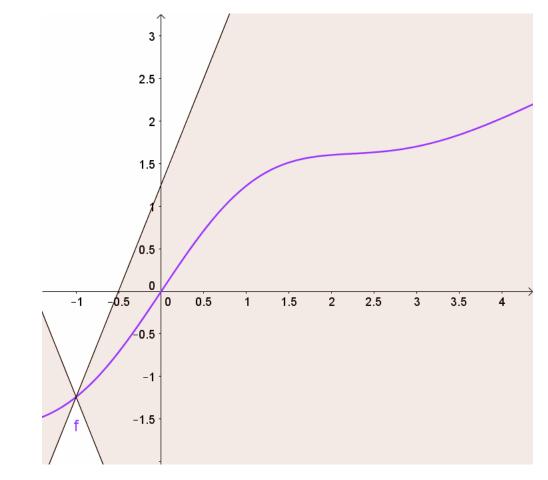
Optimization over Lipschitz-1
continuous functions acting in X

Artem Maevskiy, NRU HSE

Lipschitz continuity

- ► *f* is Lipschitz-k continuous if
- there exists a constant $k \ge 0$, such that for all x_1 and x_2 :

$$|f(x_1) - f(x_2)| \le \mathbf{k} \cdot ||x_1 - x_2||$$



img from https://en.wikipedia.org/wiki/Lipschitz_continuity

[intuition behind the dual form]

disclaimer: not a strict mathematical derivation

$$\mathrm{EMD}(P,Q) = \inf_{\gamma \in \pi} \mathbb{E}_{x_1,x_2 \sim \gamma} ||x_1 - x_2||$$

Let's add the following term to this expression:

$$+ \inf_{\gamma} \sup_{f} \mathbb{E}_{x_1, x_2 \sim \gamma} \left[\mathbb{E}_{s \sim P} f(s) - \mathbb{E}_{t \sim Q} f(t) - \left(f(x_1) - f(x_2) \right) \right]$$

f(x) — real-valued function

These cancel out when $\gamma \in \pi$ otherwise supremum over f(x) goes to $+\infty$

Therefore, we can remove the $\gamma \in \pi$ condition from the whole expression:

$$= \inf_{\gamma} \sup_{f} \mathbb{E}_{x_1, x_2 \sim \gamma} \left[||x_1 - x_2|| + \mathbb{E}_{s \sim P} f(s) - \mathbb{E}_{t \sim Q} f(t) - (f(x_1) - f(x_2)) \right]$$

Infimum and supremum operations can be swapped under certain conditions
(satisfied here – see https://vincentherrmann.github.io/blog/wasserstein/ for more detailed info)

[intuition behind the dual form]

disclaimer: not a strict mathematical derivation

$$= \sup_{f} \inf_{\gamma} \left[\mathbb{E}_{s \sim P} f(s) - \mathbb{E}_{t \sim Q} f(t) + \mathbb{E}_{x_1, x_2 \sim \gamma} \left[||x_1 - x_2|| - (f(x_1) - f(x_2)) \right] \right]$$

Consider the following case: $|f(a) - f(b)| \le ||a - b||$, $\forall a, b$ We'll denote it as: $||f||_L \le 1$

- For such case this term is 0 -
- Otherwise the whole expression is $-\infty$
- Therefore we can finally rewrite the whole thing as:

$$\mathrm{EMD}(P,Q) = \sup_{||f||_L \le 1} \left[\mathbb{E}_{x \sim P} f(x) - \mathbb{E}_{x \sim Q} f(x) \right]$$

$$\mathrm{EMD}(P,Q) = \sup_{\|f\|_{L} \le 1} \left[\mathbb{E}_{x \sim P} f(x) - \mathbb{E}_{x \sim Q} f(x) \right]$$

 The function can be expressed as a neural net – discriminator ('critic' in the original paper)

$$\mathrm{EMD}(P,Q) = \sup_{\|f\|_{L} \le 1} \left[\mathbb{E}_{x \sim P} f(x) - \mathbb{E}_{x \sim Q} f(x) \right]$$

- The function can be expressed as a neural net – discriminator ('critic' in the original paper)
- The expectations can be estimated as sample mean

$$\mathrm{EMD}(P,Q) = \sup_{\|f\|_{L} \le 1} \left[\mathbb{E}_{x \sim P} f(x) - \mathbb{E}_{x \sim Q} f(x) \right]$$

- The function can be expressed as a neural net – discriminator ('critic' in the original paper)
- Lipschitz-1 continuity can be replaced with Lipschitz-k continuity
 - In such case we'll estimate $k \times \text{EMD}(P, Q)$

 The expectations can be estimated as sample mean

$$\mathrm{EMD}(P,Q) = \sup_{\|f\|_{L} \le 1} \left[\mathbb{E}_{x \sim P} f(x) - \mathbb{E}_{x \sim Q} f(x) \right]$$

- The function can be expressed as a neural net – discriminator ('critic' in the original paper)
- Lipschitz-1 continuity can be replaced with Lipschitz-k continuity
 - In such case we'll estimate $k \times \text{EMD}(P, Q)$

 The expectations can be estimated as sample mean

> We wouldn't know what k is, but it doesn't matter: all we want is to **minimize** the EMD!

$$\mathrm{EMD}(P,Q) = \sup_{\|f\|_{L} \le 1} \left[\mathbb{E}_{x \sim P} f(x) - \mathbb{E}_{x \sim Q} f(x) \right]$$

- The function can be expressed as a neural net – discriminator ('critic' in the original paper)
- Lipschitz-1 continuity can be replaced with Lipschitz-k continuity
 - In such case we'll estimate $k \times \text{EMD}(P, Q)$
 - Can be achieved by clipping the weights of the critic: $w \rightarrow \text{clip}(w, -c, c)$ with some constant c

 The expectations can be estimated as sample mean

We wouldn't know what k is, but it doesn't matter: all we want is to **minimize** the EMD!

Algorithm 1 WGAN, our proposed algorithm. All experiments in the paper used the default values $\alpha = 0.00005$, c = 0.01, m = 64, $n_{\text{critic}} = 5$.

Require: : α , the learning rate. c, the clipping parameter. m, the batch size. $n_{\rm critic}$, the number of iterations of the critic per generator iteration. **Require:** : w_0 , initial critic parameters. θ_0 , initial generator's parameters. 1: while θ has not converged do for $t = 0, ..., n_{\text{critic}}$ do 2: Sample $\{x^{(i)}\}_{i=1}^m \sim \mathbb{P}_r$ a batch from the real data. 3: Sample $\{z^{(i)}\}_{i=1}^m \sim p(z)$ a batch of prior samples. 4: $g_w \leftarrow \nabla_w \left[\frac{1}{m} \sum_{i=1}^m f_w(x^{(i)}) - \frac{1}{m} \sum_{i=1}^m f_w(g_\theta(z^{(i)})) \right]$ 5: $w \leftarrow w + \alpha \cdot \mathrm{RMSProp}(w, q_w)$ 6: $w \leftarrow \operatorname{clip}(w, -c, c)$ 7: end for 8: Sample $\{z^{(i)}\}_{i=1}^m \sim p(z)$ a batch of prior samples. 9: $g_{\theta} \leftarrow -\nabla_{\theta} \frac{1}{m} \sum_{i=1}^{m} f_w(g_{\theta}(z^{(i)}))$ 10: $\theta \leftarrow \theta - \alpha \cdot \text{RMSProp}(\theta, q_{\theta})$ 11:

12: end while

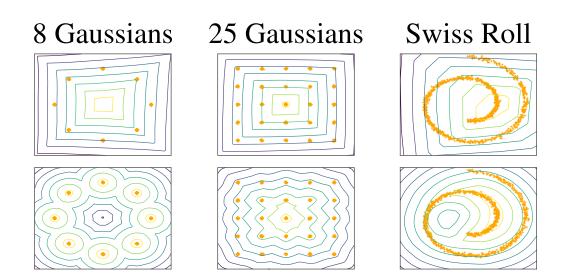
WGAN-GP

- Weight clipping makes the critic less expressive and the training harder to converge
- Optimal f should satisfy $||\nabla f|| = 1$ almost everywhere under P and Q
- Also: $||f||_L \le 1 \iff ||\nabla f|| \le 1$
- Can replace weight clipping with a gradient penalty term:

 $GP = \lambda \mathbb{E}_{\tilde{x} \sim \mathbb{P}_{\tilde{x}}} [(\|\nabla_{\tilde{x}} f(\tilde{x})\| - 1)^2]$

or alternatively ('one-sided' penalty):

 $GP = \lambda \mathbb{E}_{\tilde{x} \sim \mathbb{P}_{\tilde{x}}} [\max(0, \|\nabla_{\tilde{x}} f(\tilde{x})\| - 1)^2]$



$$\mathbb{P}_{\tilde{x}}: \begin{bmatrix} \tilde{x} = \alpha x_1 + (1-\alpha)x_2\\ \alpha \sim \text{Uniform}(0,1)\\ x_1 \sim P\\ x_2 \sim Q \end{bmatrix}$$

https://arxiv.org/abs/1704.00028

WGAN-GP

DCGAN

LSGAN

WGAN (clipping)

WGAN-GP (ours)

Baseline (G: DCGAN, D: DCGAN)

G: No BN and a constant number of filters, D: DCGAN



G: 4-layer 512-dim ReLU MLP, D: DCGAN

No normalization in either G or D

Gated multiplicative nonlinearities everywhere in G and D

\tanh nonlinearities everywhere in G and D

101-layer ResNet G and D

https://arxiv.org/abs/1704.00028

This technique allowed for very deep networks to be used for GANs

Some notable architectures

Conditional distributions

► It's often necessary to learn not just P(x), but P(x|a)

- E.g. generate the face of a person with a given hair color

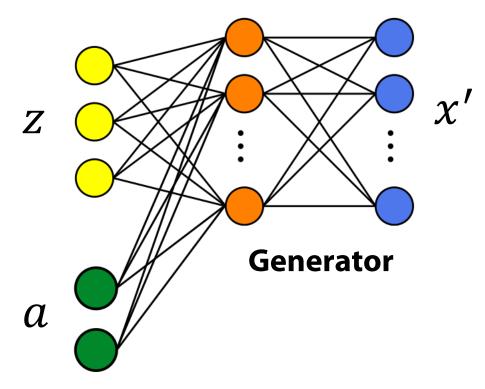
This can be achieved by:

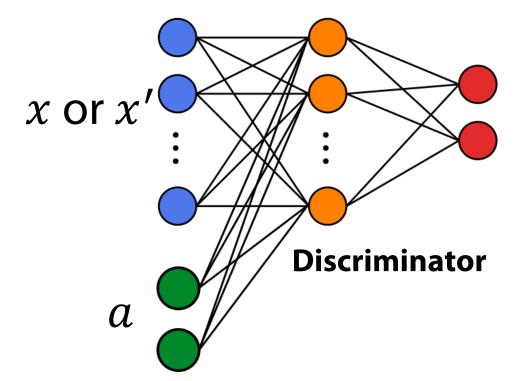
$$\begin{aligned} x'_{j} &= G_{\theta}(z_{j}) &\to \quad x'_{j} &= G_{\theta}(z_{j}, a_{j}) \\ D_{\phi} &= D_{\phi}(x_{i}) &\to \quad D_{\phi} &= D_{\phi}(x_{i}, a_{i}) \end{aligned}$$

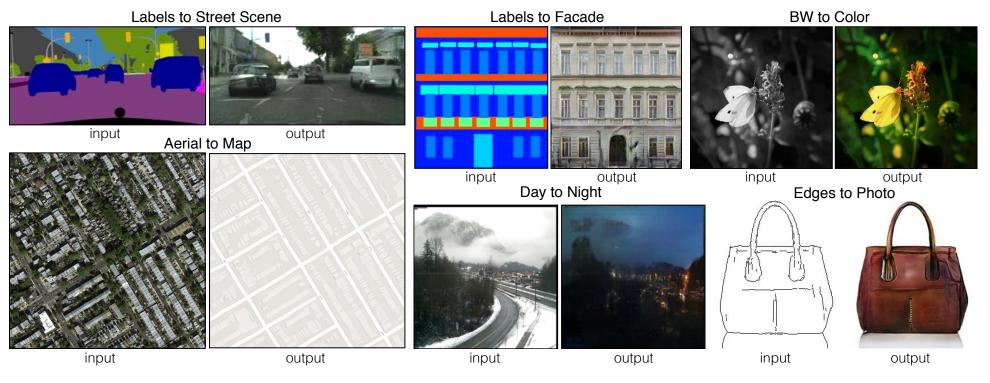
I.e. we need to provide this information to the generator and discriminator

Conditional distributions

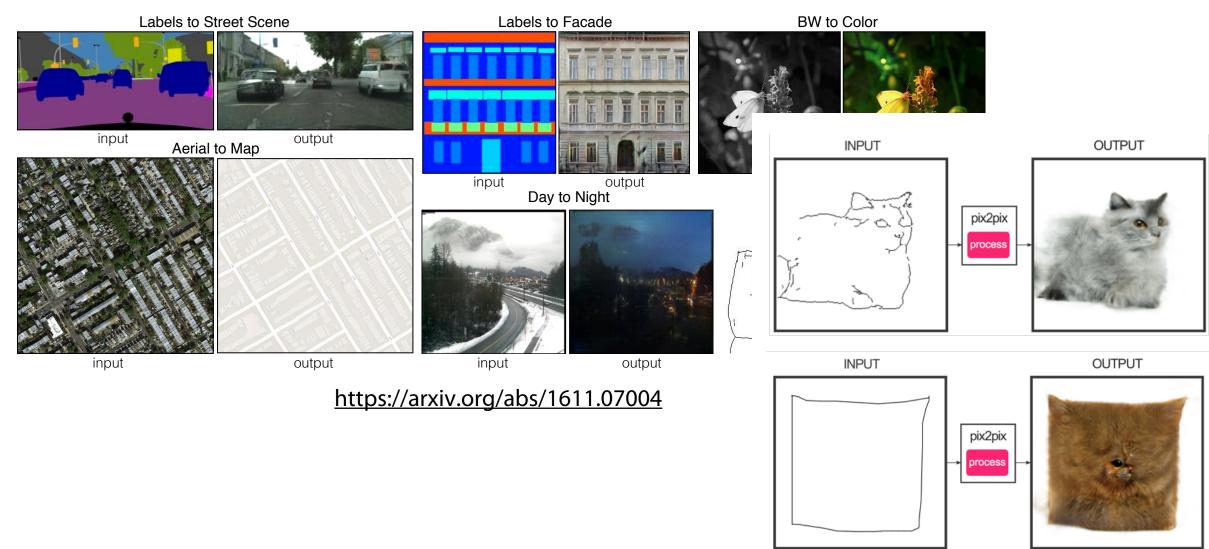
Simple for fully-connected architectures







https://arxiv.org/abs/1611.07004



images generated at https://affinelayer.com/pixsrv/

https://arxiv.org/abs/1611.07004

$$\mathcal{L}_{L1}(G) = \mathbb{E}_{x,y,z}[\|y - G(x,z)\|_1].$$

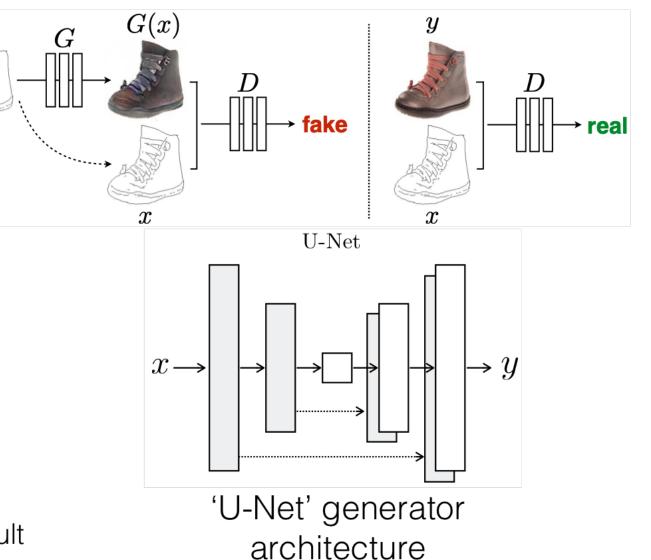
x

Our final objective is

$$G^* = \arg\min_{G} \max_{D} \mathcal{L}_{cGAN}(G, D) + \lambda \mathcal{L}_{L1}(G).$$

L1 loss term to capture low-frequency information

- Discriminator doesn't need to classify the entire image
- Instead it 'convolutionally' scans smaller patches of the image and averages the result



https://arxiv.org/abs/1611.07004

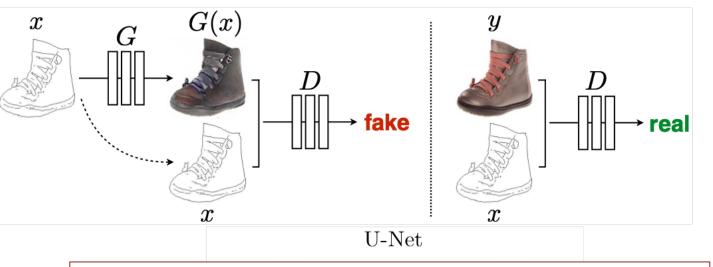
$$\mathcal{L}_{L1}(G) = \mathbb{E}_{x,y,z}[\|y - G(x,z)\|_1].$$

Our final objective is

$$G^* = \arg\min_{G} \max_{D} \mathcal{L}_{cGAN}(G, D) + \lambda \mathcal{L}_{L1}(G).$$

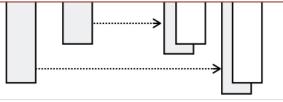
L1 loss term to capture low-frequency information

- Discriminator doesn't need to classify the entire image
- Instead it 'convolutionally' scans smaller patches of the image and averages the result

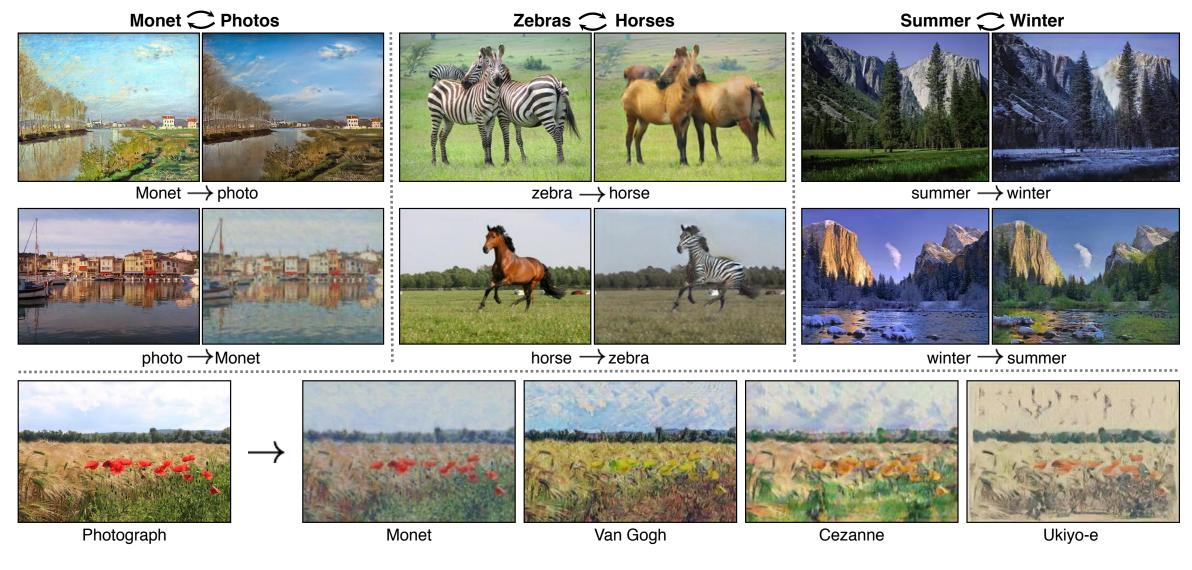


No noise input to the generator:

«The generator simply learned to ignore the noise ... Instead we provide noise only in the form of dropout, applied at both training and test time»



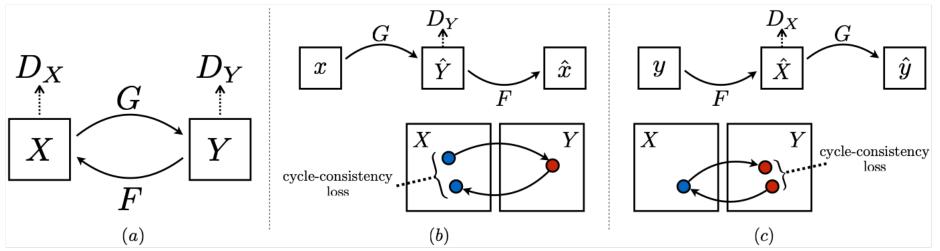
'U-Net' generator architecture



https://arxiv.org/abs/1703.10593

CycleGAN

https://arxiv.org/abs/1703.10593



(3)

Progressive Growing of GANs

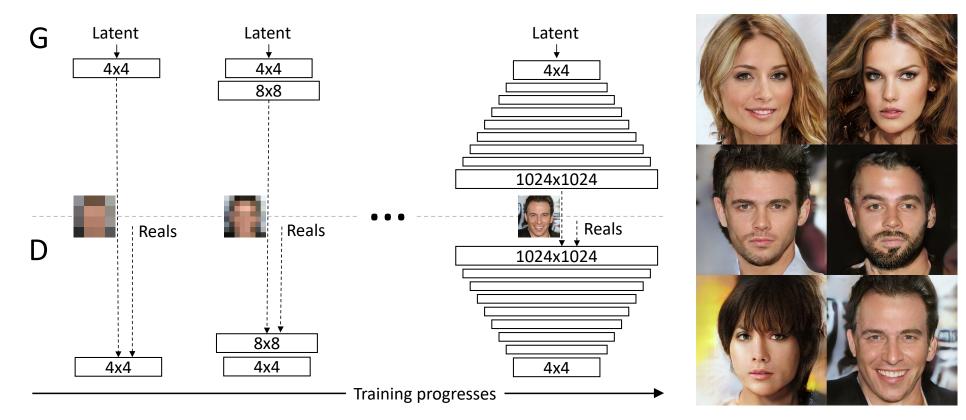


Figure 1: Our training starts with both the generator (G) and discriminator (D) having a low spatial resolution of 4×4 pixels. As the training advances, we incrementally add layers to G and D, thus increasing the spatial resolution of the generated images. All existing layers remain trainable throughout the process. Here $N \times N$ refers to convolutional layers operating on $N \times N$ spatial resolution. This allows stable synthesis in high resolutions and also speeds up training considerably. One the right we show six example images generated using progressive growing at 1024×1024 .

Artem Maevskiy, NRU HSE

https://arxiv.org/abs/1710.10196

Progressive Growing of GANs

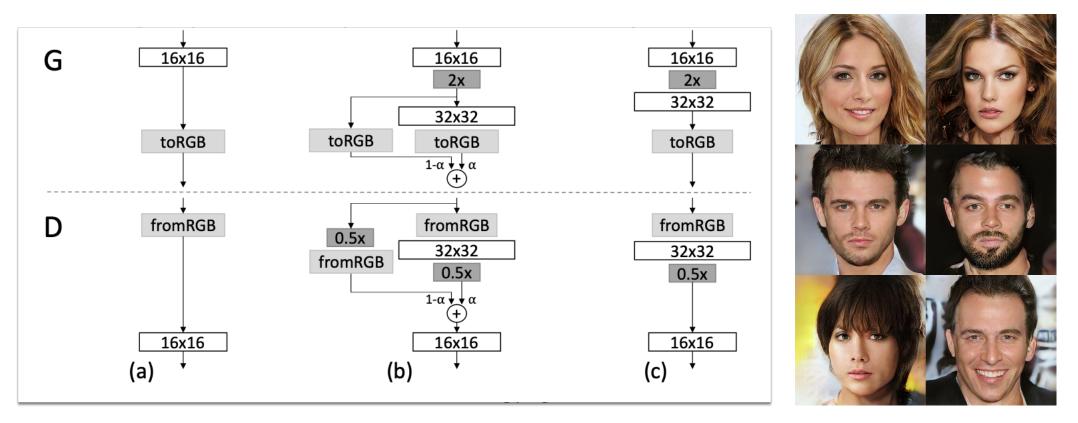


Figure 1: Our training starts with both the generator (G) and discriminator (D) having a low spatial resolution of 4×4 pixels. As the training advances, we incrementally add layers to G and D, thus increasing the spatial resolution of the generated images. All existing layers remain trainable throughout the process. Here $N \times N$ refers to convolutional layers operating on $N \times N$ spatial resolution. This allows stable synthesis in high resolutions and also speeds up training considerably. One the right we show six example images generated using progressive growing at 1024×1024 .

Artem Maevskiy, NRU HSE

https://arxiv.org/abs/1710.10196

Evaluating generative models

Evaluating generative models

- No single guide to follow
- Approaches are very problem-specific
 - E.g. perceived visual quality of generated images vs. quality of a generated dental crown model (<u>https://arxiv.org/abs/1804.00064</u>)
 - Most solutions are adapted to or invented for a given particular task
- We'll mention some approaches

Evaluating generative models (most obvious thing to do)

- By-eye comparison (if your data allows that)
 - Compare individual objects or whole distributions (e.g. in projections)
 - There might be no need to do any complicated evaluation if the model results simply look bad

Evaluating generative models (simple things to do)

- Compare meaningful physical characteristics (if applicable)
 - Means, medians, standard deviations, etc.
 - Correlations

- Statistical tests (χ^2 , Kolmogorov-Smirnov, etc.)
 - between individual dimensions or projections

Additional classifier

- Train an independent model (e.g. xgboost) to distringuish real and fake samples
- Evaluate your GAN by checking the classifier's score (e.g. ROC AUC)
- Pros:
 - An objective quality measure
- ► Cons:
 - Resource consuming
 - Requires hyper-parameter tuning
 - May get picky to things that are not important

Inception score

- Introduced in <u>https://arxiv.org/abs/1606.03498</u>
- Apply the Inception model (pre-trained image classifier) to obtain the conditional label distribution p(y|x) for each image x
 - this should be low-entropy (the classifier should be certain)
- Calculate marginal $p(y) = \int p(y|x = G(z))p(z)dz$
 - this should be high-entropy (diversity of samples)
- Combining these two requirements:

$$IS = \exp\left[\mathbb{E}_{x}\left[KL(p(y|x) || p(y))\right]\right]$$

Fréchet inception distance (FID score)

- Introduced in <u>https://arxiv.org/abs/1706.08500</u>
- One of the drawbacks of IS is that it doesn't care about the true distribution
- Instead one can compare distributions of activations at some Inception layer (originally – last pooling layer)
- ► The authors proposed calculating the Fréchet (aka Wasserstein-2) distance
- Distance between multivariate Gaussian approximations:

$$\text{FID} = \left\| \mu_r - \mu_g \right\|^2 + \text{Tr} \left[\Sigma_r + \Sigma_g - 2 \left(\Sigma_r \Sigma_g \right)^{1/2} \right]$$

Precision and Recal distance (PRD)

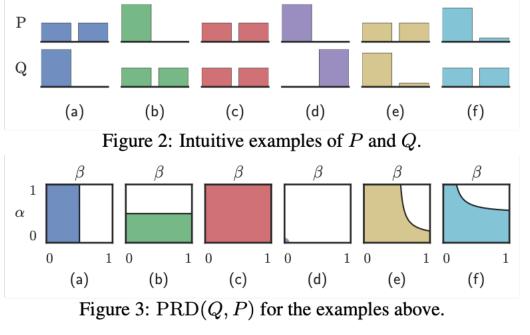
Definition 1. For $\alpha, \beta \in (0, 1]$, the probability distribution Q has precision α at recall β w.r.t. P if there exist distributions μ , ν_P and ν_Q such that

Decomposition with a common part

$$P = \beta \mu + (1 - \beta)\nu_P \quad and \quad Q = \alpha \mu + (1 - \alpha)\nu_Q. \tag{3}$$

Definition 2. The set of attainable pairs of precision and recall of a distribution Q w.r.t. a distribution P is denoted by PRD(Q, P) and it consists of all (α, β) satisfying Definition 1 and the pair (0, 0).

- The authors provide an algorithm to calculate it for discrete distributions
- They convert Inception activations to discrete distribution using *k*-means clustering



https://arxiv.org/abs/1806.00035

More metrics...

- An extensive comparison of a large variety of measures:
 - https://arxiv.org/abs/1802.03446

		Measure	Description
Quantitative	1	1. Average Log-likelihood [18, 22]	• Log likelihood of explaining realworld held out/test data using a density estimated from the generated data
			(e.g. using KDE or Parzen window estimation). $L = \frac{1}{N} \sum_{i} \log P_{model}(\mathbf{x}_i)$
		2. Coverage Metric [33]	• The probability mass of the true data "covered" by the model distribution
		2. Obverage metric [55]	$C := P_{data}(dP_{model} > t)$ with t such that $P_{model}(dP_{model} > t) = 0.95$
	;	3. Inception Score (IS) [3]	• KLD between conditional and marginal label distributions over generated data. exp $(\mathbb{E}_{\mathbf{x}} [\mathbb{KL} (p(\mathbf{y} \mid \mathbf{x}) \parallel p(\mathbf{y})])$
		4. Modified Inception Score (m-IS) [34]	• Encourages diversity within images sampled from a particular category. $\exp(\mathbb{E}_{\mathbf{x}_i}[\mathbb{E}_{\mathbf{x}_j}[(\mathbb{KL}(P(y \mathbf{x}_i) P(y \mathbf{x}_j))]])$
		. Mode Score (MS) [35]	• Similar to IS but also takes into account the prior distribution of the labels over real data.
			$\exp\left(\mathbb{E}_{\mathbf{x}}\left[\mathbb{KL}\left(p\left(y\mid\mathbf{x}\right)\parallel p\left(y^{train}\right)\right)\right] - \mathbb{KL}\left(p\left(y\right)\parallel p\left(y^{train}\right)\right)\right)$
	1	. AM Score [36]	• Takes into account the KLD between distributions of training labels vs. predicted labels,
			as well as the entropy of predictions. $\mathbb{KL}(p(y^{\text{train}}) \parallel p(y)) + \mathbb{E}_{\mathbf{x}}[H(y \mathbf{x})]$
		7. Fréchet Inception Distance (FID) [37]	• Wasserstein-2 distance between multi-variate Gaussians fitted to data embedded into a feature space
			$FID(r,g) = \mu_r - \mu_g _2^2 + Tr(\Sigma_r + \Sigma_g - 2(\Sigma_r \Sigma_g)^{\frac{1}{2}})$ • Measures the dissimilarity between two probability distributions P_r and P_g using samples drawn independently
		 Maximum Mean Discrepancy (MMD) 38] 	• Measures the dissimilarity between two probability distributions P_r and P_g using samples drawn independently
			from each distribution. $M_k(P_r, P_g) = \mathbb{E}_{\mathbf{x}, \mathbf{x}' \sim P_r}[k(\mathbf{x}, \mathbf{x}')] - 2\mathbb{E}_{\mathbf{x} \sim P_r, \mathbf{y} \sim P_g}[k(\mathbf{x}, \mathbf{y})] + \mathbb{E}_{\mathbf{y}, \mathbf{y}' \sim P_g}[k(\mathbf{y}, \mathbf{y}')]$ • The critic (<i>e.g.</i> an NN) is trained to produce high values at real samples and low values at generated samples
		. The Wasserstein Critic [39]	• The critic (e.g. an NN) is trained to produce high values at real samples and low values at generated samples
			$W(\mathbf{x}_{test}, \mathbf{x}_g) = \frac{1}{N} \sum_{i=1}^{N} f(\mathbf{x}_{test}[i]) - \frac{1}{N} \sum_{i=1}^{N} f(\mathbf{x}_g[i])$
		10. Birthday Paradox Test [27]	$\hat{W}(\mathbf{x}_{test}, \mathbf{x}_g) = \frac{1}{N} \sum_{i=1}^{N} \hat{f}(\mathbf{x}_{test}[i]) - \frac{1}{N} \sum_{i=1}^{N} \hat{f}(\mathbf{x}_g[i])$ • Measures the support size of a discrete (continuous) distribution by counting the duplicates (near duplicates)
	at	11. Classifier Two Sample Test (C2ST) [40]	• Answers whether two samples are drawn from the same distribution (e.g. by training a binary classifier)
	Ē	2. Classification Performance [1, 15]	• An indirect technique for evaluating the quality of unsupervised representations
	Iar		(e.g. feature extraction; FCN score). See also the GAN Quality Index (GQI) [41].
	u	13. Boundary Distortion [42]	Measures diversity of generated samples and covariate shift using classification methods.
		14. Number of Statistically-Different Bins	• Given two sets of samples from the same distribution, the number of samples that
		(NDB) [43]	fall into a given bin should be the same up to sampling noise
		15. Image Retrieval Performance [44]	Measures the distributions of distances to the nearest neighbors of some query images (<i>i.e.</i> diversity)
		16. Generative Adversarial Metric (GAM) [31]	• Compares two GANs by having them engaged in a battle against each other by swapping discriminators or generators. $p(\mathbf{x} y=1; M_1^{\prime})/p(\mathbf{x} y=1; M_2^{\prime}) = (p(y=1 \mathbf{x}; D_1)p(\mathbf{x}; G_2))/(p(y=1 \mathbf{x}; D_2)p(\mathbf{x}; G_1))$
		17. Tournament Win Rate and Skill	• Implements a tournament in which a player is either a discriminator that attempts to distinguish between
		Rating [45]	real and fake data or a generator that attempts to fool the discriminator into accepting fake data as real.
		18. Normalized Relative Discriminative	• Compares n GANs based on the idea that if the generated samples are closer to real ones,
		Score (NRDS) [32]	more epochs would be needed to distinguish them from real samples.
	1	19. Adversarial Accuracy and Divergence [46]	• Adversarial Accuracy. Computes the classification accuracies achieved by the two classifiers, one trained
			on real data and another on generated data, on a labeled validation set to approximate $P_g(y \mathbf{x})$ and $P_r(y \mathbf{x})$.
			Adversarial Divergence: Computes $\mathbb{KL}(P_g(y \mathbf{x}), P_r(y \mathbf{x}))$
	:	20. Geometry Score [47]	• Compares geometrical properties of the underlying data manifold between real and generated data.
		21. Reconstruction Error [48]	• Measures the reconstruction error (e.g. L_2 norm) between a test image and its closest
			generated image by optimizing for z (<i>i.e.</i> $min_{\mathbf{z}} G(\mathbf{z}) - \mathbf{x}^{(test)} ^2$)
		22. Image Quality Measures [49, 50, 51]	• Evaluates the quality of generated images using measures such as SSIM, PSNR, and sharpness difference
		23. Low-level Image Statistics [52, 53]	• Evaluates how similar low-level statistics of generated images are to those of natural scenes
			in terms of mean power spectrum, distribution of random filter responses, contrast distribution, etc.
		24. Precision, Recall and F_1 score [23]	• These measures are used to quantify the degree of overfitting in GANs, often over toy datasets.
Onalitative	e	1. Nearest Neighbors	• To detect overfitting, generated samples are shown next to their nearest neighbors in the training set
	EV.	2. Rapid Scene Categorization [18]	• In these experiments, participants are asked to distinguish generated samples from real images
	ita		in a short presentation time (e.g. 100 ms); i.e. real v.s fake
	Iali	3. Preference Judgment [54, 55, 56, 57]	• Participants are asked to rank models in terms of the fidelity of their generated images (<i>e.g.</i> pairs, triples)
		4. Mode Drop and Collapse [58, 59]	• Over datasets with known modes (<i>e.g.</i> a GMM or a labeled dataset), modes are computed as by measuring the distances of generated data to mode centers
		5. Network Internals [1, 60, 61, 62, 63, 64]	• Regards exploring and illustrating the internal representation and dynamics of models (<i>e.g.</i> space continuity)
	ļ		as well as visualizing learned features
L			

Summary

- GANs a rather broad field of ML
 - Lots of different architectures, this lecture doesn't pretend to be comprehensive
- May say, that in GANs we 'learn' the loss for the generator
- Wasserstein GAN is a useful technique that allows really deep networks to be used for data generation
- Finding universal quality evaluation method is rather an open question

GANs for fast simulation

Quite a developing field!

- Important note: one cannot increase the statistics with GANs
- GANs rather memorize and interpolate the available data

 [8] A. Maevskiy et al. [LHCb Collaboration], "Fast Data-Driven Simulation of Cherenkov Detectors Using Generative Adversarial Networks," arXiv:1905.11825 [physics.ins-det].

- [9] D. Belayneh et al., "Calorimetry with Deep Learning: Particle Simulation and Reconstruction for Collider Physics," arXiv:1912.06794 [physics.ins-det].
- [10] J. R. Vlimant, F. Pantaleo, M. Pierini, V. Loncar, S. Vallecorsa, D. Anderson, T. Nguyen and A. Zlokapa, "Large-Scale Distributed Training Applied to Generative Adversarial Networks for Calorimeter Simulation," EPJ Web Conf. 214, 06025 (2019) doi:10.1051/epjconf/201921406025.
- [11] D. Lancierini, P. Owen and N. Serra, "Simulating the LHCb hadron calorimeter with generative adversarial networks," Nuovo Cim. C 42, no. 4, 197 (2019) doi:10.1393/ncc/i2019-19197-3.
- [12] L. de Oliveira, M. Paganini and B. Nachman, "Learning Particle Physics by Example: Location-Aware Generative Adversarial Networks for Physics Synthesis," Comput. Softw. Big Sci. 1, no. 1, 4 (2017) doi:10.1007/s41781-017-0004-6 [arXiv:1701.05927 [stat.ML]].
- [13] S. Carrazza and F. A. Dreyer, "Lund jet images from generative and cycle-consistent adversarial networks," Eur. Phys. J. C 79, no. 11, 979 (2019) doi:10.1140/epjc/s10052-019-7501-1 [arXiv:1909.01359 [hep-ph]].
- [14] M. Paganini, L. de Oliveira and B. Nachman, "Accelerating Science with Generative Adversarial Networks: An Application to 3D Particle Showers in Multilayer Calorimeters," Phys. Rev. Lett. 120, no. 4, 042003 (2018) doi:10.1103/PhysRevLett.120.042003 [arXiv:1705.02355 [hep-ex]].
- [15] L. de Oliveira, M. Paganini and B. Nachman, "Controlling Physical Attributes in GAN-Accelerated Simulation of Electromagnetic Calorimeters," J. Phys. Conf. Ser. 1085, no. 4, 042017 (2018) doi:10.1088/1742-6596/1085/4/042017 [arXiv:1711.08813 [hep-ex]].
- [16] M. Paganini, L. de Oliveira and B. Nachman, "CaloGAN : Simulating 3D high energy particle showers in multilayer electromagnetic calorimeters with generative adversarial networks," Phys. Rev. D 97, no. 1, 014021 (2018) doi:10.1103/PhysRevD.97.014021 [arXiv:1712.10321 [hep-ex]].
- [17] F. Carminati, A. Gheata, G. Khattak, P. Mendez Lorenzo, S. Sharan and S. Vallecorsa, "Three dimensional Generative Adversarial Networks for fast simulation," J. Phys. Conf. Ser. 1085, no. 3, 032016 (2018) doi:10.1088/1742-6596/1085/3/032016.
- [18] M. Erdmann, L. Geiger, J. Glombitza and D. Schmidt, "Generating and refining particle detector simulations using the Wasserstein distance in adversarial networks," Comput. Softw. Big Sci. 2, no. 1, 4 (2018) doi:10.1007/s41781-018-0008-x [arXiv:1802.03325 [astroph.IM]].

arXiv:2002.06307 [hep-ph]

K. Matchev, P. Shyamsundar, Uncertainties associated with GAN-generated datasets in high energy physics,

- [19] P. Musella and F. Pandolfi, "Fast and Accurate Simulation of Particle Detectors Using Generative Adversarial Networks," Comput. Softw. Big Sci. 2, no. 1, 8 (2018) doi:10.1007/s41781-018-0015-y [arXiv:1805.00850 [hep-ex]].
- [20] M. Erdmann, J. Glombitza and T. Quast, "Precise simulation of electromagnetic calorimeter showers using a Wasserstein Generative Adversarial Network," Comput. Softw. Big Sci. 3, no. 1, 4 (2019) doi:10.1007/s41781-018-0019-7 [arXiv:1807.01954 [physics.ins-det]].
- [21] S. Vallecorsa, F. Carminati and G. Khattak, "3D convolutional GAN for fast simulation," EPJ Web Conf. 214, 02010 (2019) doi:10.1051/epjconf/201921402010.
- [22] S. Otten, S. Caron, W. de Swart, M. van Beekveld, L. Hendriks, C. van Leeuwen, D. Podareanu, R. R. de Austri and R. Verheyen, "Event Generation and Statistical Sampling for Physics with Deep Generative Models and a Density Information Buffer," arXiv:1901.00875 [hep-ph].
- [23] A. Butter, T. Plehn and R. Winterhalder, "How to GAN LHC Events," SciPost Phys. 7, no. 6, 075 (2019) doi:10.21468/SciPostPhys.7.6.075 [arXiv:1907.03764 [hep-ph]].
- [24] C. Ahdida et al. [SHiP Collaboration], "Fast simulation of muons produced at the SHiP experiment using Generative Adversarial Networks," JINST 14, P11028 (2019) doi:10.1088/1748-0221/14/11/P11028 [arXiv:1909.04451 [physics.ins-det]].
- [25] S. Farrell, W. Bhimji, T. Kurth, M. Mustafa, D. Bard, Z. Lukic, B. Nachman and H. Patton, "Next Generation Generative Neural Networks for HEP," EPJ Web Conf. 214, 09005 (2019) doi:10.1051/epjconf/201921409005.
- [26] J. Arjona Martínez, T. Q. Nguyen, M. Pierini, M. Spiropulu and J. R. Vlimant, "Particle Generative Adversarial Networks for full-event simulation at the LHC and their application to pileup description," arXiv:1912.02748 [hep-ex].
- [27] B. Hashemi, N. Amin, K. Datta, D. Olivito and M. Pierini, "LHC analysis-specific datasets with Generative Adversarial Networks," arXiv:1901.05282 [hep-ex].
- [28] R. Di Sipio, M. Faucci Giannelli, S. Ketabchi Haghighat and S. Palazzo, "A Generative-Adversarial Network Approach for the Simulation of QCD Dijet Events at the LHC," PoS LeptonPhoton 2019, 050 (2019) doi:10.22323/1.367.0050.
- [29] R. Di Sipio, M. Faucci Giannelli, S. Ketabchi Haghighat and S. Palazzo, "DijetGAN: A Generative-Adversarial Network Approach for the Simulation of QCD Dijet Events at the LHC," JHEP 1908, 110 (2020) doi:10.1007/JHEP08(2019)110 [arXiv:1903.02433 [hep-ex]].
- [30] Y. Alanazi, N. Sato, T. Liu, W. Melnitchouk, M. P. Kuchera, E. Pritchard, M. Robertson, R. Strauss, L. Velasco and Y. Li, "Simulation of electron-proton scattering events by a Feature-Augmented and Transformed Generative Adversarial Network (FAT-GAN)," arXiv:2001.11103 [hep-ph].

GANs for fast simulation

Quite a developing field!

(Shameless plug)

- Important note: one cannot increase the statistics with GANs
- GANs rather memorize and interpolate the available data

K. Matchev, P. Shyamsundar, Uncertainties associated with GAN-generated datasets in high energy physics, arXiv:2002.06307 [hep-ph]

- [8] A. Maevskiy et al. [LHCb Collaboration], "Fast Data-Driven Simulation of Cherenkov Detectors Using Generative Adversarial Networks," arXiv:1905.11825 [physics.ins-det].
- [9] D. Belaynen et al., "Calorimetry with Deep Learning. Factors Simstruction for Collider Physics," arXiv:1912.06794 [physics.ins-det].
- [10] J. R. Vlimant, F. Pantaleo, M. Pierini, V. Loncar, S. Vallecorsa, D. Anderson, T. Nguyen and A. Zlokapa, "Large-Scale Distributed Training Applied to Generative Adversarial Networks for Calorimeter Simulation," EPJ Web Conf. 214, 06025 (2019) doi:10.1051/epjconf/201921406025.
- [11] D. Lancierini, P. Owen and N. Serra, "Simulating the LHCb hadron calorimeter with generative adversarial networks," Nuovo Cim. C 42, no. 4, 197 (2019) doi:10.1393/ncc/i2019-19197-3.
- [12] L. de Oliveira, M. Paganini and B. Nachman, "Learning Particle Physics by Example: Location-Aware Generative Adversarial Networks for Physics Synthesis," Comput. Softw. Big Sci. 1, no. 1, 4 (2017) doi:10.1007/s41781-017-0004-6 [arXiv:1701.05927 [stat.ML]].
- [13] S. Carrazza and F. A. Dreyer, "Lund jet images from generative and cycle-consistent adversarial networks," Eur. Phys. J. C 79, no. 11, 979 (2019) doi:10.1140/epjc/s10052-019-7501-1 [arXiv:1909.01359 [hep-ph]].
- [14] M. Paganini, L. de Oliveira and B. Nachman, "Accelerating Science with Generative Adversarial Networks: An Application to 3D Particle Showers in Multilayer Calorimeters," Phys. Rev. Lett. 120, no. 4, 042003 (2018) doi:10.1103/PhysRevLett.120.042003 [arXiv:1705.02355 [hep-ex]].
- [15] L. de Oliveira, M. Paganini and B. Nachman, "Controlling Physical Attributes in GAN-Accelerated Simulation of Electromagnetic Calorimeters," J. Phys. Conf. Ser. 1085, no. 4, 042017 (2018) doi:10.1088/1742-6596/1085/4/042017 [arXiv:1711.08813 [hep-ex]].
- [16] M. Paganini, L. de Oliveira and B. Nachman, "CaloGAN : Simulating 3D high energy particle showers in multilayer electromagnetic calorimeters with generative adversarial networks," Phys. Rev. D 97, no. 1, 014021 (2018) doi:10.1103/PhysRevD.97.014021 [arXiv:1712.10321 [hep-ex]].
- [17] F. Carminati, A. Gheata, G. Khattak, P. Mendez Lorenzo, S. Sharan and S. Vallecorsa, "Three dimensional Generative Adversarial Networks for fast simulation," J. Phys. Conf. Ser. 1085, no. 3, 032016 (2018) doi:10.1088/1742-6596/1085/3/032016.
- [18] M. Erdmann, L. Geiger, J. Glombitza and D. Schmidt, "Generating and refining particle detector simulations using the Wasserstein distance in adversarial networks," Comput. Softw. Big Sci. 2, no. 1, 4 (2018) doi:10.1007/s41781-018-0008-x [arXiv:1802.03325 [astroph.IM]].

- [19] P. Musella and F. Pandolfi, "Fast and Accurate Simulation of Particle Detectors Using Generative Adversarial Networks," Comput. Softw. Big Sci. 2, no. 1, 8 (2018) doi:10.1007/s41781-018-0015-y [arXiv:1805.00850 [hep-ex]].
- [20] M. Erdmann, J. Glombitza and T. Quast, "Precise simulation of electromagnetic calorimeter showers using a Wasserstein Generative Adversarial Network," Comput. Softw. Big Sci. 3, no. 1, 4 (2019) doi:10.1007/s41781-018-0019-7 [arXiv:1807.01954 [physics.ins-det]].
- [21] S. Vallecorsa, F. Carminati and G. Khattak, "3D convolutional GAN for fast simulation," EPJ Web Conf. 214, 02010 (2019) doi:10.1051/epjconf/201921402010.
- [22] S. Otten, S. Caron, W. de Swart, M. van Beekveld, L. Hendriks, C. van Leeuwen, D. Podareanu, R. R. de Austri and R. Verheyen, "Event Generation and Statistical Sampling for Physics with Deep Generative Models and a Density Information Buffer," arXiv:1901.00875 [hep-ph].
- [23] A. Butter, T. Plehn and R. Winterhalder, "How to GAN LHC Events," SciPost Phys. 7, no. 6, 075 (2019) doi:10.21468/SciPostPhys.7.6.075 [arXiv:1907.03764 [hep-ph]].
- [24] C. Ahdida et al. [SHiP Collaboration], "Fast simulation of muons produced at the SHiP experiment using Generative Adversarial Networks," JINST 14, P11028 (2019) doi:10.1088/1748-0221/14/11/P11028 [arXiv:1909.04451 [physics.ins-det]].
- [25] S. Farrell, W. Bhimji, T. Kurth, M. Mustafa, D. Bard, Z. Lukic, B. Nachman and H. Patton, "Next Generation Generative Neural Networks for HEP," EPJ Web Conf. 214, 09005 (2019) doi:10.1051/epjconf/201921409005.
- [26] J. Arjona Martínez, T. Q. Nguyen, M. Pierini, M. Spiropulu and J. R. Vlimant, "Particle Generative Adversarial Networks for full-event simulation at the LHC and their application to pileup description," arXiv:1912.02748 [hep-ex].
- [27] B. Hashemi, N. Amin, K. Datta, D. Olivito and M. Pierini, "LHC analysis-specific datasets with Generative Adversarial Networks," arXiv:1901.05282 [hep-ex].
- [28] R. Di Sipio, M. Faucci Giannelli, S. Ketabchi Haghighat and S. Palazzo, "A Generative-Adversarial Network Approach for the Simulation of QCD Dijet Events at the LHC," PoS LeptonPhoton 2019, 050 (2019) doi:10.22323/1.367.0050.
- [29] R. Di Sipio, M. Faucci Giannelli, S. Ketabchi Haghighat and S. Palazzo, "DijetGAN: A Generative-Adversarial Network Approach for the Simulation of QCD Dijet Events at the LHC," JHEP 1908, 110 (2020) doi:10.1007/JHEP08(2019)110 [arXiv:1903.02433 [hep-ex]].
- [30] Y. Alanazi, N. Sato, T. Liu, W. Melnitchouk, M. P. Kuchera, E. Pritchard, M. Robertson, R. Strauss, L. Velasco and Y. Li, "Simulation of electron-proton scattering events by a Feature-Augmented and Transformed Generative Adversarial Network (FAT-GAN)," arXiv:2001.11103 [hep-ph].

Artem Maevskiy

Rate this lecture

Artem Maevskiy, NRU HSE