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›

Generative modelling



▶ Training data – a set of objects, e.g.:

– Photos of animals / people faces / rooms / whatever

– Text

– Audio of speech / music / whatever

– Signals from a high energy physics experiment detector

▶ Goal: build a model to sample similar data

Problem setup
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▶ Training data – a set of objects, e.g.:

– Photos of animals / people faces / rooms / whatever

– Text

– Audio of speech / music / whatever

– Signals from a high energy physics experiment detector

▶ Goal: build a model to sample similar data

– Learn the population distribution to sample more objects
from it

– (may be done implicitly, i.e. when we can’t evaluate the probability 

density, yet can sample from it)

Problem setup
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𝑥! | 𝑖 = 1,…𝑁

𝑝 𝑥

Set of objects:

Population PDF:

I.e. 𝑥! are i.i.d. 
sampled from 𝑝(𝑥)

Learn 𝑞 𝑥 ∼ 𝑝(𝑥) to 
sample 𝑥" from 𝑞 𝑥



To name a few:

▶ Creative professions, e.g.

– Generating textures for 3D modelling, audio samples for music etc.

– Style transfer

▶ Data privacy

– Publishing samples without disclosing private information from the original data

▶ Physics and engineering

– Building a deep learning model to reproduce the stochastic output of an accurate but slow 
simulator algorithm

Possible applications
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This X does not exist

Artem Maevskiy, NRU HSE

https://thisxdoesnotexist.com/
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Style transfer
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https://junyanz.github.io/CycleGAN/
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Generative models progress
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https://twitter.com/goodfellow_ian/status/1084973596236144640

https://twitter.com/goodfellow_ian/status/1084973596236144640


›

Generative Adversarial Networks
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How can a neural network generate data?

Artem Maevskiy, et. al.

Random noize
e.g. multivariate normal

Neural network

Cat image attribution: https://pixabay.com/users/chiemsee2016-1892688/

Generated data

▶ This makes the generated object being a differentiable function of the network 
parameters

https://pixabay.com/users/chiemsee2016-1892688/


▶ Generated object is a differentiable function of the network parameters

▶ Need a differentiable measure of similarity between the sets of generated 
objects and real ones

– Can optimize with gradient descent

▶ How to find such a measure?

How to train such a generator?

Artem Maevskiy, et. al.



▶ Measure of similarity: how well can another neural network (discriminator) tell the 
generated objects apart from the real ones

Adversarial approach

Artem Maevskiy, et. al.

Random noize

Generator network
Generated data

“Real” data

Discriminator network

Separate real 
objects from 

generated

Goodfellow et al., Generative Adversarial Networks, 
arXiv:1406.2661 [stat.ML]



▶ Noise samples:

Let’s put it in formulas
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▶ Noise samples:

Let’s put it in formulas
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𝑧! ∼ 𝑝" 𝑧
where 𝑝" is some simple PDF we can sample from, e.g. 𝒩 0, 𝕀 .

▶ Generated samples:
𝑥!# = 𝐺$ 𝑧!

where 𝐺$ is the generator network with parameters 𝜃.

▶ Discriminator network (with parameters 𝜙):
𝐷% 𝑥

returns the probability for 𝑥 being a real sample rather than a generated one

▶ Measure of similarity between the generated and real samples:

𝐿& = max
%

𝔼'∼) ' log𝐷% 𝑥 + 𝔼"∼)! " log 1 − 𝐷% 𝐺$ 𝑧 → min
$

Log-likelihood for discriminator prediction

Probability the sample 
was generated

May characterize this loss as 
adversarial: two networks 

compete against each other



Training the networks

Artem Maevskiy, NRU HSE
https://arxiv.org/abs/1406.2661
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▶ Evolution from classical machine learning to deep learning:

– “Let’s build a model that automatically finds the best features for us”

▶ Evolution to adversarial loss:

– “Let’s build a model that learns the loss function for us”

A view on the adversarial loss

Artem Maevskiy, NRU HSE

𝐿& = max
%

𝔼'∼) ' log𝐷% 𝑥 + 𝔼"∼)! " log 1 − 𝐷% 𝐺$ 𝑧 → min
$

Generator loss is learned by optimising the discriminator



›

Problems with GANs



▶ If we re-write the loss using 𝑝*+,,$ 𝑥 – the distribution of 𝑥# = 𝐺$ 𝑧 , and 

expand the expectations as integrals:

The optimal discriminator solution
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𝐿& = max
%

<
'
𝑝 𝑥 log 𝐷% 𝑥 + 𝑝*+,,$ 𝑥 log 1 − 𝐷% 𝑥 𝑑𝑥

▶ it’s easy to show that max% is obtained at 𝜙∗ 𝜃 with:

𝐷%∗ $ 𝑥 =
𝑝 𝑥

𝑝 𝑥 + 𝑝*+,,$ 𝑥
▶ So the objective becomes:

𝐿& = 𝔼'∼) ' log
𝑝 𝑥
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+ 𝔼'∼)#$%,' ' log

𝑝*+,,$ 𝑥
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Jensen–Shannon divergence



▶ In case 𝑝 and 𝑝*+,,$ have non-overlapping support:

Vanishing gradients
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𝐿& = 𝔼'∼) ' log
𝑝 𝑥

𝑝 𝑥 + 𝑝*+,,$ 𝑥
+ 𝔼'∼)#$%,' ' log

𝑝*+,,$ 𝑥
𝑝 𝑥 + 𝑝*+,,$ 𝑥

= 𝔼'∼) ' log
𝑝 𝑥
𝑝 𝑥

+ 𝔼'∼)#$%,' ' log
𝑝*+,,$ 𝑥
𝑝*+,,$ 𝑥

= 0 = 𝑐𝑜𝑛𝑠𝑡

▶ No meaningful gradient, can’t learn



▶ Assume at some 
point the generator 
has learned one of 
the modes

▶ No meaningful 
gradients to drive 
the solution towards 
covering the other 
modes

Mode collapse

Artem Maevskiy, NRU HSE



›

Wasserstein GAN



▶ The problems with GANs are mainly due to Jensen–Shannon divergence 
providing problematic gradients

▶ What if we try to find some other measure of distance between real and 
generated distributions that doesn’t have these problems?

Alternative distance measure

Artem Maevskiy, NRU HSE
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Also called “Earth mover’s distance” (EMD)

▶ The cost of moving an amount 𝒎 from 𝒙𝟏 to 𝒙𝟐 is 𝒎× 𝒙𝟐 − 𝒙𝟏
▶ EMD(𝑃, 𝑄) = minimum total cost of converting 𝑃 into 𝑄



Why is it better?
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𝛾 𝑥4, 𝑥5 𝑑𝑥4𝑑𝑥5 – how much dirt we’re moving from 
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▶ Let 𝜋 be the set of all plans that convert 𝑃 to 𝑄, i.e.:
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▶ Then, the Wasserstein distance between 𝑃 and 𝑄 is:

EMD 𝑃, 𝑄 = inf
/∈1

𝔼2!,2"∼/ 𝑥3 − 𝑥4
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𝜋 = 𝛾: 𝛾 ≥ 0, <
'(
𝛾 𝑥4, 𝑥5 𝑑𝑥4 = 𝑄 𝑥5 , <

')
𝛾 𝑥4, 𝑥5 𝑑𝑥5 = 𝑃 𝑥4

▶ Then, the Wasserstein distance between 𝑃 and 𝑄 is:

EMD 𝑃, 𝑄 = inf
/∈1

𝔼2!,2"∼/ 𝑥3 − 𝑥4

Optimization over all transport plans – not too friendly

▶ Dual form (Kantorovich-Rubinstein duality):

EMD 𝑃, 𝑄 = su𝑝
5 #64

𝔼2∼7𝑓 𝑥 − 𝔼2∼8𝑓 𝑥
Optimization over Lipschitz-1 
continuous functions acting in 𝓧 → ℝ



▶ 𝑓 is Lipschitz-k continuous if

▶ there exists a constant 𝑘 ≥ 0, such that 
for all 𝑥4 and 𝑥5:

Lipschitz continuity
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𝑓 𝑥4 − 𝑓 𝑥5 ≤ k ⋅ 𝑥4 − 𝑥5

img from https://en.wikipedia.org/wiki/Lipschitz_continuity

https://en.wikipedia.org/wiki/Lipschitz_continuity
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▶ The function can be expressed as a 
neural net – discriminator (‘critic’ in 
the original paper)

▶ Lipschitz-1 continuity can be 
replaced with Lipschitz-k continuity

– In such case we’ll estimate 𝑘×EMD(𝑃, 𝑄)

– Can be achieved by clipping the weights 
of the critic: 𝑤 → clip(𝑤,−𝑐, 𝑐)with 
some constant 𝑐
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Algorithm 1 WGAN, our proposed algorithm. All experiments in the paper used
the default values ↵ = 0.00005, c = 0.01, m = 64, ncritic = 5.

Require: : ↵, the learning rate. c, the clipping parameter. m, the batch size.
ncritic, the number of iterations of the critic per generator iteration.

Require: : w0, initial critic parameters. ✓0, initial generator’s parameters.
1: while ✓ has not converged do
2: for t = 0, ..., ncritic do
3: Sample {x

(i)
}
m

i=1 ⇠ Pr a batch from the real data.
4: Sample {z

(i)
}
m

i=1 ⇠ p(z) a batch of prior samples.
5: gw  rw

⇥
1
m

P
m

i=1 fw(x
(i))� 1

m

P
m

i=1 fw(g✓(z
(i)))

⇤

6: w  w + ↵ · RMSProp(w, gw)
7: w  clip(w,�c, c)
8: end for
9: Sample {z

(i)
}
m

i=1 ⇠ p(z) a batch of prior samples.
10: g✓  �r✓

1
m

P
m

i=1 fw(g✓(z
(i)))

11: ✓  ✓ � ↵ · RMSProp(✓, g✓)
12: end while

The fact that the EM distance is continuous and di↵erentiable a.e. means that
we can (and should) train the critic till optimality. The argument is simple, the
more we train the critic, the more reliable gradient of the Wasserstein we get, which
is actually useful by the fact that Wasserstein is di↵erentiable almost everywhere.
For the JS, as the discriminator gets better the gradients get more reliable but the
true gradient is 0 since the JS is locally saturated and we get vanishing gradients,
as can be seen in Figure 1 of this paper and Theorem 2.4 of [1]. In Figure 2
we show a proof of concept of this, where we train a GAN discriminator and a
WGAN critic till optimality. The discriminator learns very quickly to distinguish
between fake and real, and as expected provides no reliable gradient information.
The critic, however, can’t saturate, and converges to a linear function that gives
remarkably clean gradients everywhere. The fact that we constrain the weights
limits the possible growth of the function to be at most linear in di↵erent parts of
the space, forcing the optimal critic to have this behaviour.

Perhaps more importantly, the fact that we can train the critic till optimality
makes it impossible to collapse modes when we do. This is due to the fact that mode
collapse comes from the fact that the optimal generator for a fixed discriminator
is a sum of deltas on the points the discriminator assigns the highest values, as
observed by [4] and highlighted in [11].

In the following section we display the practical benefits of our new algorithm,
and we provide an in-depth comparison of its behaviour and that of traditional
GANs.
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▶ Weight clipping makes the critic less 
expressive and the training harder to 
converge

▶ Optimal 𝑓 should satisfy ∇𝑓 = 1 almost 
everywhere under 𝑃 and 𝑄

▶ Also: 𝑓 ; ≤ 1 ⟺ ∇𝑓 ≤ 1

▶ Can replace weight clipping with a 
gradient penalty term:

WGAN-GP
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8 Gaussians 25 Gaussians Swiss Roll

GP = 𝜆𝔼 <'∼ℙ*+ ∇ <'𝑓 b𝑥 − 1 5 ℙ <' ∶

b𝑥 = 𝛼𝑥4 + 1 − 𝛼 𝑥5
𝛼 ∼ Uniform 0, 1

𝑥4 ∼ 𝑃
𝑥5 ∼ 𝑄

GP = 𝜆𝔼 <'∼ℙ*+ max 0, ∇ <'𝑓 b𝑥 − 1 5
or alternatively (‘one-sided’ penalty):

https://arxiv.org/abs/1704.00028

https://arxiv.org/abs/1704.00028
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DCGAN LSGAN WGAN (clipping) WGAN-GP (ours)
Baseline (G: DCGAN, D: DCGAN)

G: No BN and a constant number of filters, D: DCGAN

G: 4-layer 512-dim ReLU MLP, D: DCGAN

No normalization in either G or D

Gated multiplicative nonlinearities everywhere in G and D

tanh nonlinearities everywhere in G and D

101-layer ResNet G and D

Figure 2: Different GAN architectures trained with different methods. We only succeeded in train-
ing every architecture with a shared set of hyperparameters using WGAN-GP.

5.2 Training varied architectures on LSUN bedrooms

To demonstrate our model’s ability to train many architectures with its default settings, we train six
different GAN architectures on the LSUN bedrooms dataset [31]. In addition to the baseline DC-
GAN architecture from [22], we choose six architectures whose successful training we demonstrate:
(1) no BN and a constant number of filters in the generator, as in [2], (2) 4-layer 512-dim ReLU
MLP generator, as in [2], (3) no normalization in either the discriminator or generator (4) gated
multiplicative nonlinearities, as in [24], (5) tanh nonlinearities, and (6) 101-layer ResNet generator
and discriminator.

Although we do not claim it is impossible without our method, to the best of our knowledge this
is the first time very deep residual networks were successfully trained in a GAN setting. For each
architecture, we train models using four different GAN methods: WGAN-GP, WGAN with weight
clipping, DCGAN [22], and Least-Squares GAN [18]. For each objective, we used the default set
of optimizer hyperparameters recommended in that work (except LSGAN, where we searched over
learning rates).

For WGAN-GP, we replace any batch normalization in the discriminator with layer normalization
(see section 4). We train each model for 200K iterations and present samples in Figure 2. We only
succeeded in training every architecture with a shared set of hyperparameters using WGAN-GP.
For every other training method, some of these architectures were unstable or suffered from mode
collapse.

5.3 Improved performance over weight clipping

One advantage of our method over weight clipping is improved training speed and sample quality.
To demonstrate this, we train WGANs with weight clipping and our gradient penalty on CIFAR-
10 [13] and plot Inception scores [23] over the course of training in Figure 3. For WGAN-GP,

6
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This technique allowed 
for very deep networks to 
be used for GANs
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▶ It’s often necessary to learn not just 𝑃(𝑥), but 𝑃(𝑥|𝑎)
– E.g. generate the face of a person with a given hair color

▶ This can be achieved by:

Conditional distributions
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𝑥># = 𝐺$ 𝑧> → 𝑥># = 𝐺$ 𝑧>, 𝑎>
𝐷% = 𝐷% 𝑥! → 𝐷% = 𝐷% 𝑥!, 𝑎!

▶ I.e. we need to provide this information to the generator and discriminator



▶ Simple for fully-connected architectures

Conditional distributions
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Generator Discriminator

𝑧

𝑎 𝑎

𝑥 or 𝑥!𝑥!
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Image-to-Image Translation with Conditional Adversarial Networks

Phillip Isola Jun-Yan Zhu Tinghui Zhou Alexei A. Efros

Berkeley AI Research (BAIR) Laboratory, UC Berkeley
{isola,junyanz,tinghuiz,efros}@eecs.berkeley.edu

Labels to Facade BW to Color

Aerial to Map

Labels to Street Scene

Edges to Photo

input output input

inputinput

input output

output

outputoutput

input output

Day to Night

Figure 1: Many problems in image processing, graphics, and vision involve translating an input image into a corresponding output image.
These problems are often treated with application-specific algorithms, even though the setting is always the same: map pixels to pixels.
Conditional adversarial nets are a general-purpose solution that appears to work well on a wide variety of these problems. Here we show
results of the method on several. In each case we use the same architecture and objective, and simply train on different data.

Abstract

We investigate conditional adversarial networks as a
general-purpose solution to image-to-image translation
problems. These networks not only learn the mapping from
input image to output image, but also learn a loss func-
tion to train this mapping. This makes it possible to apply
the same generic approach to problems that traditionally
would require very different loss formulations. We demon-
strate that this approach is effective at synthesizing photos
from label maps, reconstructing objects from edge maps,
and colorizing images, among other tasks. Indeed, since the
release of the pix2pix software associated with this pa-
per, a large number of internet users (many of them artists)
have posted their own experiments with our system, further
demonstrating its wide applicability and ease of adoption
without the need for parameter tweaking. As a commu-
nity, we no longer hand-engineer our mapping functions,
and this work suggests we can achieve reasonable results
without hand-engineering our loss functions either.

1. Introduction
Many problems in image processing, computer graphics,

and computer vision can be posed as “translating” an input
image into a corresponding output image. Just as a concept
may be expressed in either English or French, a scene may
be rendered as an RGB image, a gradient field, an edge map,
a semantic label map, etc. In analogy to automatic language
translation, we define automatic image-to-image translation
as the task of translating one possible representation of a
scene into another, given sufficient training data (see Figure
1). Traditionally, each of these tasks has been tackled with
separate, special-purpose machinery (e.g., [16, 25, 20, 9,
11, 53, 33, 39, 18, 58, 62]), despite the fact that the setting
is always the same: predict pixels from pixels. Our goal in
this paper is to develop a common framework for all these
problems.

The community has already taken significant steps in this
direction, with convolutional neural nets (CNNs) becoming
the common workhorse behind a wide variety of image pre-
diction problems. CNNs learn to minimize a loss function –
an objective that scores the quality of results – and although
the learning process is automatic, a lot of manual effort still

1
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be rendered as an RGB image, a gradient field, an edge map,
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as the task of translating one possible representation of a
scene into another, given sufficient training data (see Figure
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separate, special-purpose machinery (e.g., [16, 25, 20, 9,
11, 53, 33, 39, 18, 58, 62]), despite the fact that the setting
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this paper is to develop a common framework for all these
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No noise input to the generator:
«The generator simply learned to ignore the noise … 
Instead we provide noise only in the form of dropout, 

applied at both training and test time»
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Unpaired Image-to-Image Translation
using Cycle-Consistent Adversarial Networks

Jun-Yan Zhu⇤ Taesung Park⇤ Phillip Isola Alexei A. Efros
Berkeley AI Research (BAIR) laboratory, UC Berkeley

Zebras Horses

horse        zebra

zebra        horse

Summer Winter

summer        winter

winter        summer

Photograph Van Gogh CezanneMonet Ukiyo-e

Monet        Photos

Monet        photo

photo       Monet

Figure 1: Given any two unordered image collections X and Y , our algorithm learns to automatically “translate” an image
from one into the other and vice versa: (left) Monet paintings and landscape photos from Flickr; (center) zebras and horses
from ImageNet; (right) summer and winter Yosemite photos from Flickr. Example application (bottom): using a collection
of paintings of famous artists, our method learns to render natural photographs into the respective styles.

Abstract
Image-to-image translation is a class of vision and

graphics problems where the goal is to learn the mapping
between an input image and an output image using a train-
ing set of aligned image pairs. However, for many tasks,
paired training data will not be available. We present an
approach for learning to translate an image from a source
domain X to a target domain Y in the absence of paired
examples. Our goal is to learn a mapping G : X ! Y
such that the distribution of images from G(X) is indistin-
guishable from the distribution Y using an adversarial loss.
Because this mapping is highly under-constrained, we cou-
ple it with an inverse mapping F : Y ! X and introduce a
cycle consistency loss to enforce F (G(X)) ⇡ X (and vice
versa). Qualitative results are presented on several tasks
where paired training data does not exist, including collec-
tion style transfer, object transfiguration, season transfer,
photo enhancement, etc. Quantitative comparisons against
several prior methods demonstrate the superiority of our
approach.

1. Introduction
What did Claude Monet see as he placed his easel by the

bank of the Seine near Argenteuil on a lovely spring day
in 1873 (Figure 1, top-left)? A color photograph, had it
been invented, may have documented a crisp blue sky and
a glassy river reflecting it. Monet conveyed his impression
of this same scene through wispy brush strokes and a bright
palette.

What if Monet had happened upon the little harbor in
Cassis on a cool summer evening (Figure 1, bottom-left)?
A brief stroll through a gallery of Monet paintings makes it
possible to imagine how he would have rendered the scene:
perhaps in pastel shades, with abrupt dabs of paint, and a
somewhat flattened dynamic range.

We can imagine all this despite never having seen a side
by side example of a Monet painting next to a photo of the
scene he painted. Instead, we have knowledge of the set of
Monet paintings and of the set of landscape photographs.
We can reason about the stylistic differences between these

* indicates equal contribution
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Figure 1: Our training starts with both the generator (G) and discriminator (D) having a low spa-
tial resolution of 4⇥4 pixels. As the training advances, we incrementally add layers to G and D,
thus increasing the spatial resolution of the generated images. All existing layers remain trainable
throughout the process. Here N ⇥N refers to convolutional layers operating on N ⇥ N spatial
resolution. This allows stable synthesis in high resolutions and also speeds up training considerably.
One the right we show six example images generated using progressive growing at 1024⇥ 1024.

Another benefit is the reduced training time. With progressively growing GANs most of the itera-
tions are done at lower resolutions, and comparable result quality is often obtained up to 2–6 times
faster, depending on the final output resolution.

The idea of growing GANs progressively is related to the work of Wang et al. (2017), who use mul-
tiple discriminators that operate on different spatial resolutions. That work in turn is motivated by
Durugkar et al. (2016) who use one generator and multiple discriminators concurrently, and Ghosh
et al. (2017) who do the opposite with multiple generators and one discriminator. Hierarchical
GANs (Denton et al., 2015; Huang et al., 2016; Zhang et al., 2017) define a generator and discrimi-
nator for each level of an image pyramid. These methods build on the same observation as our work
– that the complex mapping from latents to high-resolution images is easier to learn in steps – but
the crucial difference is that we have only a single GAN instead of a hierarchy of them. In contrast
to early work on adaptively growing networks, e.g., growing neural gas (Fritzke, 1995) and neuro
evolution of augmenting topologies (Stanley & Miikkulainen, 2002) that grow networks greedily,
we simply defer the introduction of pre-configured layers. In that sense our approach resembles
layer-wise training of autoencoders (Bengio et al., 2007).

3 INCREASING VARIATION USING MINIBATCH STANDARD DEVIATION

GANs have a tendency to capture only a subset of the variation found in training data, and Salimans
et al. (2016) suggest “minibatch discrimination” as a solution. They compute feature statistics not
only from individual images but also across the minibatch, thus encouraging the minibatches of
generated and training images to show similar statistics. This is implemented by adding a minibatch
layer towards the end of the discriminator, where the layer learns a large tensor that projects the
input activation to an array of statistics. A separate set of statistics is produced for each example in a
minibatch and it is concatenated to the layer’s output, so that the discriminator can use the statistics
internally. We simplify this approach drastically while also improving the variation.

Our simplified solution has neither learnable parameters nor new hyperparameters. We first compute
the standard deviation for each feature in each spatial location over the minibatch. We then average
these estimates over all features and spatial locations to arrive at a single value. We replicate the
value and concatenate it to all spatial locations and over the minibatch, yielding one additional (con-
stant) feature map. This layer could be inserted anywhere in the discriminator, but we have found it
best to insert it towards the end (see Appendix A.1 for details). We experimented with a richer set
of statistics, but were not able to improve the variation further. In parallel work, Lin et al. (2017)
provide theoretical insights about the benefits of showing multiple images to the discriminator.
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›

Evaluating generative models



▶ No single guide to follow

▶ Approaches are very problem-specific

– E.g. perceived visual quality of generated images vs. quality of a generated dental crown 
model (https://arxiv.org/abs/1804.00064)

– Most solutions are adapted to or invented for a given particular task

▶ We’ll mention some approaches

Evaluating generative models

Artem Maevskiy, NRU HSE
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▶ By-eye comparison (if your data allows that)

– Compare individual objects or whole distributions (e.g. in projections)

– There might be no need to do any complicated evaluation if the model results simply look 
bad

Evaluating generative models
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(most obvious thing to do)



▶ Compare meaningful physical characteristics (if applicable)

– Means, medians, standard deviations, etc.

– Correlations

▶ Statistical tests (𝜒5, Kolmogorov-Smirnov, etc.)

– between individual dimensions or projections

Evaluating generative models
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(simple things to do)



▶ Train an independent model (e.g. xgboost) to distringuish real and fake 
samples

▶ Evaluate your GAN by checking the classifier’s score (e.g. ROC AUC)

▶ Pros:

– An objective quality measure

▶ Cons:

– Resource consuming

– Requires hyper-parameter tuning

– May get picky to things that are not important

Additional classifier
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▶ Introduced in https://arxiv.org/abs/1606.03498

▶ Apply the Inception model (pre-trained image classifier) to obtain the 
conditional label distribution 𝑝 𝑦|𝑥 for each image 𝑥
– this should be low-entropy (the classifier should be certain)

▶ Calculate marginal 𝑝 𝑦 = ∫ 𝑝 𝑦 𝑥 = 𝐺 𝑧 𝑝 𝑧 𝑑𝑧
– this should be high-entropy (diversity of samples)

▶ Combining these two requirements:

Inception score

Artem Maevskiy, NRU HSE

IS = exp 𝔼' KL 𝑝 𝑦|𝑥 || 𝑝 𝑦

https://arxiv.org/abs/1606.03498


▶ Introduced in https://arxiv.org/abs/1706.08500

▶ One of the drawbacks of IS is that it doesn’t care about the true distribution

▶ Instead one can compare distributions of activations at some Inception layer 
(originally – last pooling layer)

▶ The authors proposed calculating the Fréchet (aka Wasserstein-2) distance

▶ Distance between multivariate Gaussian approximations:

Fréchet inception distance (FID score)

Artem Maevskiy, NRU HSE

FID = 𝜇? − 𝜇/
5 + Tr Σ? + Σ/ − 2 Σ?Σ/
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Precision and Recal distance (PRD)

Artem Maevskiy, NRU HSE
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▶ An extensive comparison of a 
large variety of measures:

– https://arxiv.org/abs/1802.03446

More metrics…

Artem Maevskiy, NRU HSE

Measure Description
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1. Average Log-likelihood [18, 22] • Log likelihood of explaining realworld held out/test data using a density estimated from the generated data
(e.g. using KDE or Parzen window estimation). L = 1

N

P
i logPmodel(xi)

2. Coverage Metric [33] • The probability mass of the true data “covered” by the model distribution
C := Pdata(dPmodel > t) with t such that Pmodel(dPmodel > t) = 0.95

3. Inception Score (IS) [3] • KLD between conditional and marginal label distributions over generated data. exp (Ex [KL (p (y | x) k p (y))])
4. Modified Inception Score (m-IS) [34] • Encourages diversity within images sampled from a particular category. exp(Exi [Exj [(KL(P (y|xi)||P (y|xj))]])

5. Mode Score (MS) [35] • Similar to IS but also takes into account the prior distribution of the labels over real data.
exp

�
Ex

⇥
KL

�
p (y | x) k p

�
y
train

��⇤
� KL

�
p (y) k p

�
y
train

���

6. AM Score [36] • Takes into account the KLD between distributions of training labels vs. predicted labels,
as well as the entropy of predictions. KL(p(ytrain) k p(y))+Ex

⇥
H(y|x)

⇤

7. Fréchet Inception Distance (FID) [37]
• Wasserstein-2 distance between multi-variate Gaussians fitted to data embedded into a feature space
FID(r, g) = ||µr � µg ||22 + Tr(⌃r + ⌃g � 2(⌃r⌃g)

1
2 )

8. Maximum Mean Discrepancy (MMD)
[38]

• Measures the dissimilarity between two probability distributions Pr and Pg using samples drawn independently
from each distribution. Mk(Pr, Pg) = Ex,x0⇠Pr

[k(x,x0)]� 2Ex⇠Pr,y⇠Pg [k(x,y)] + Ey,y0⇠Pg
[k(y,y0)]

9. The Wasserstein Critic [39]
• The critic (e.g. an NN) is trained to produce high values at real samples and low values at generated samples
Ŵ (xtest ,xg) =

1
N

PN
i=1 f̂(xtest [i])� 1

N

PN
i=1 f̂(xg [i])

10. Birthday Paradox Test [27] • Measures the support size of a discrete (continuous) distribution by counting the duplicates (near duplicates)
11. Classifier Two Sample Test (C2ST) [40] • Answers whether two samples are drawn from the same distribution (e.g. by training a binary classifier)

12. Classification Performance [1, 15] • An indirect technique for evaluating the quality of unsupervised representations
(e.g. feature extraction; FCN score). See also the GAN Quality Index (GQI) [41].

13. Boundary Distortion [42] • Measures diversity of generated samples and covariate shift using classification methods.
14. Number of Statistically-Different Bins
(NDB) [43]

• Given two sets of samples from the same distribution, the number of samples that
fall into a given bin should be the same up to sampling noise

15. Image Retrieval Performance [44] • Measures the distributions of distances to the nearest neighbors of some query images (i.e. diversity)
16. Generative Adversarial Metric (GAM)
[31]

• Compares two GANs by having them engaged in a battle against each other by swapping discriminators
or generators. p(x|y = 1;M ‘

1)/p(x|y = 1;M ‘
2) =

�
p(y = 1|x;D1)p(x;G2)

�
/
�
p(y = 1|x;D2)p(x;G1)

�

17. Tournament Win Rate and Skill
Rating [45]

• Implements a tournament in which a player is either a discriminator that attempts to distinguish between
real and fake data or a generator that attempts to fool the discriminators into accepting fake data as real.

18. Normalized Relative Discriminative
Score (NRDS) [32]

• Compares n GANs based on the idea that if the generated samples are closer to real ones,
more epochs would be needed to distinguish them from real samples.

19. Adversarial Accuracy and Divergence
[46]

• Adversarial Accuracy. Computes the classification accuracies achieved by the two classifiers, one trained
on real data and another on generated data, on a labeled validation set to approximate Pg(y|x) and Pr(y|x).
Adversarial Divergence: Computes KL(Pg(y|x), Pr(y|x))

20. Geometry Score [47] • Compares geometrical properties of the underlying data manifold between real and generated data.

21. Reconstruction Error [48] • Measures the reconstruction error (e.g. L2 norm) between a test image and its closest
generated image by optimizing for z (i.e. minz||G(z)� x(test)||2)

22. Image Quality Measures [49, 50, 51] • Evaluates the quality of generated images using measures such as SSIM, PSNR, and sharpness difference

23. Low-level Image Statistics [52, 53] • Evaluates how similar low-level statistics of generated images are to those of natural scenes
in terms of mean power spectrum, distribution of random filter responses, contrast distribution, etc.

24. Precision, Recall and F1 score [23] • These measures are used to quantify the degree of overfitting in GANs, often over toy datasets.

Q
ua

lit
at

iv
e 1. Nearest Neighbors • To detect overfitting, generated samples are shown next to their nearest neighbors in the training set

2. Rapid Scene Categorization [18] • In these experiments, participants are asked to distinguish generated samples from real images
in a short presentation time (e.g. 100 ms); i.e. real v.s fake

3. Preference Judgment [54, 55, 56, 57] • Participants are asked to rank models in terms of the fidelity of their generated images (e.g. pairs, triples)

4. Mode Drop and Collapse [58, 59] • Over datasets with known modes (e.g. a GMM or a labeled dataset), modes are computed as by measuring
the distances of generated data to mode centers

5. Network Internals [1, 60, 61, 62, 63, 64] • Regards exploring and illustrating the internal representation and dynamics of models (e.g. space continuity)
as well as visualizing learned features

Table 1: A summary of common GAN evaluation measures.
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▶ GANs – a rather broad field of ML

– Lots of different architectures, this lecture doesn’t pretend to be comprehensive

▶ May say, that in GANs we ‘learn’ the loss for the generator

▶ Wasserstein GAN is a useful technique that allows really deep networks to be 
used for data generation

▶ Finding universal quality evaluation method is rather an open question

Summary

Artem Maevskiy, NRU HSE



▶ Quite a developing field!

▶ Important note: one cannot 
increase the statistics with 
GANs

▶ GANs rather memorize and 
interpolate the available 
data

GANs for fast simulation

6th MPD meetingArtem Maevskiy, et. al.

K. Matchev, P. Shyamsundar, Uncertainties associated with GAN-generated datasets in high energy physics, 
arXiv:2002.06307 [hep-ph]
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Thank you!
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