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How to study evolution

Before 1960s: trees based on expert opinion and on
morphological data (types of eyes, number of legs etx); informal
methods;
Later: more objective data including molecular biology/genomic
data; formal methods;
Since mid 1990s-2000: using information on evolutionary
distances
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Evolution pattern: a phylogenetic tree?
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Evolution pattern: an embedding?
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Linnaeus classification system principles
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Evolution: basic hypotheses

Eugene Stepanov Reconstructing intrinsic manifolds 6 / 34



Isometric embedding in a Euclidean space?

(E, d) – finite metric space. Find f : E → Rn isometry, i.e.

|f (x)− f (y)| = d(x, y).

3 points embed isometrically in R2, but already 4 may not embed in any
Rn...
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Isometric embedding in a Euclidean space

Schoenberg theorem: criterium based on the matrix {gij},

gij :=
1
2

(d2
1i + d2

1j − d2
ij) where dij := d(xi, xj) :

(E, d) is isometrically embeddable in Rn, iff {gij} is positive
semidefinite.
Equivalently, Blumenthal (Cayley-Menger) theorem: criterium based on
Cayley-Menger determinants (express volumes of euclidean
simplices): ∣∣∣∣∣∣∣∣∣∣∣∣∣

0 d2
12 d2

13 . . . d2
1k 1

d2
21 0 d2

23 . . . d2
2k 1

d2
31 d2

32 0 . . . d2
3k 1

...
...

...
...

...
...

d2
k1 d2

k2 d2
k3 . . . 0 1

1 1 1 . . . 1 0

∣∣∣∣∣∣∣∣∣∣∣∣∣
,

Algorithm: multidimensional scaling (MDS).
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Evolutionary space

SILVA database: datasets of aligned small (16S/18S, SSU) and large
subunit (23S/28S, LSU) ribosomal RNA (rRNA) sequences for all three
domains of life (Bacteria, Archaea and Eukarya).
Currently more than 9 mln rRNA sequences.
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Isometric embedding in a Euclidean space

Distance geometry: applications in
telecommunication networks (e.g. GPS): identify the positions of
objects (ships, sensors) known distances between them;
(bio)chemistry: reconstruct the 3D structure of a protein molecule
from the distances between atoms (NMR data).
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BiLipschitz embedding in a Euclidean space

Theorem (J. Bourgain 1985)
Let #E = N. Then (E, d) can be embedded biLipschitz into Rn with
n = O(log2 N) and distortion O(log N), i.e. there is an f : E → Rn with

d(x, y) ≤ |f (x)− f (y)| ≤ Cd(x, y)

with C = O(log N).

Very similar to Johnson-Lindenstrauss lemmma: just to compare,

Theorem (Johnson-Lindenstrauss 1984)
Let #E = N, E ⊂ Rm. Then (E, | · |) can be for every ε > 0
“compressed” into Rn with n = O(log N/ε2) and distortion 1 + ε, i.e.
there is a biLipschitz (almost isometric) embdeeding f : E → Rn with

d(x, y) ≤ |f (x)− f (y)| ≤ (1 + ε)d(x, y).
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Reconstructing a manifold from intrinsic distances #1

M unknown (compact) smooth Riemannian manifold, {yj} ⊂ M (say, a
dense set) (or, in probablistic setting, i.i.d. random points with uniform
law)
dij := dM(yi, yj) known
Can one reconstruct an M abstract manifold from intrinsic distances?
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Reconstructing a manifold from intrinsic distances #2

Goal: M 7→ Σ, yj 7→ xj,

dΣ(xi, xj) = dM(yi, yj)

(isometric embedding), or

(1− ε)dM(yi, yj) ≤ dΣ(xi, xj) ≤ (1 + ε)dM(yi, yj),

ε > 0 small.
(almost isometric embedding)
Algorithms

MDS (Multidimensional scaling).Most frequently used (in one of
numerous modifications). Originally designed for euclidean
distances only! It is genuinely believed that nevertheless, it
reconstructs intrinsic distances. See e.g.
Jianzhong Wang. Geometric structure of high-dimensional data
and dimensionality reduction. Springer.
MVU (maximum variance unfolding).
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Reconstructing a manifold from intrinsic distances #3

C. Fefferman, S. Ivanov, Ya. Kurylev, M. Lassas, H. Narayaman.
Reconstruction and Interpolation of Manifolds I: The geometric
Whitney problem.
https://arxiv.org/pdf/1508.00674.pdf

C. Fefferman, S. Ivanov, M. Lassas, H. Narayaman.
Reconstruction of a Riemannian manifold from noisy intrinsic
distances. https://arxiv.org/pdf/1905.07182.pdf

One can reconstruct an abstract manifold from intrinsic distances
without changing too much sectional curvatures
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How to reconstruct the embedding: curvature/reach
conditions are essential
(Square) flat torus isometric embedding in R3 by Nash-Kuiper theorem
(only C1) via Gromov convex integration construction:

Hevea project: http://hevea-project.fr/
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Most popular approach: MDS #1

Lara Kassab. Multidimensional scaling: Infinite metric measure
spaces.
arXiv:1904.07763, 2019.
Reconstructing S1 (with intrinsic distances) from N uniformly distributed
points

produces the closed curve γN : [0, 2π]→ Rn defined by

γN(t) :=

(aN
1 cos(t), aN

1 sin(t), . . . , aN
2k+1 cos((2k + 1)t), aN

2k+1 sin((2k + 1)t), . . .) ∈ Rn,

where limN aN
j = aj :=

√
2/j (with j odd).

optimal dimension infinite (`2 instead of Rn),
one can show

|γ(t)− γ(s)| = 2
√
π|t − s|1/2.

snowflake instead of a circumference; NO ISOMETRY! But still a
homeomorphism...
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Most popular approach: MDS #2

0.00040.00020.00000.00020.0004
0.00040.00020.00000.00020.0004

0.0015

0.0010

0.0005

0.0000

0.0005

0.0010

The two-dimensional sphere S2 reconstructed by MDS.
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Variational approach for manifold reconstruction #1

M compact smooth submanifold in Rn: M ⊂ Rn,

Reach M :=

{ρ > 0 : every x ∈ (M)ρ has a unique projection on M} > 0.

(normal injectivity radius from M)
Σk ⊂ M closed sets (“data points”), Σk → M in Hausdorff distance.
Fixed an ε > 0 and a k ∈ N, define the functionals

Fε,k : C(M;Rn)→ R,Fε : C(M;Rn)→ R

by the formula

Fε,k(f ) := sup

{∣∣∣∣ |f (x)− f (y)|2

d2
M(x, y)

− 1
∣∣∣∣ : {x, y} ⊂ Σk, 0 < dM(x, y) ≤ ε

}
,

Fε(f ) := sup

{∣∣∣∣ |f (x)− f (y)|2

d2
M(x, y)

− 1
∣∣∣∣ : 0 < dM(x, y) ≤ ε

}
.
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Variational approach for manifold reconstruction #2

Theorem

There are ε0, C1, C2 (depending on Reach M and diam M), such that
the variational problems

min {Fε,k(f ) : f ∈ C} , where
C := {f ∈ C(M : Rn), f (x0) = 0, |f (x)− f (y)| ≥ C2dM(x, y)} ,

(Pk)

have solutions for every k ∈ N, ε < ε0. If fk solves (Pk), then up to a
subsequence limk fk = f , where f solves

min {Fε(f ) : f ∈ C} (P)
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Variational approach for manifold reconstruction #3

Moreover,

dM(x, y)(1− C1ε) ≤ |f (x)− f (y)| ≤ dM(x, y)(1 + C1ε), (1)

if dM(x, y) < ε, and

dM(x, y)(1− C1ε) ≤ dΣ(f (x), f (y)) ≤ dM(x, y)(1 + C1ε), (2)

where Σ := f (M). N.B. fk(M)→ Σ in Hausdorff distance.
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Towards an algorithm: discrete setting #1

Let {yi} ⊂ M be a dense set in M,

dij := dM(yi, yj).

Fixed an ε > 0 and a k ∈ N, define the functional Fε,k : (Rn)k → R by
the formula

Fε,k(x1, . . . , xk) := max

{∣∣∣∣∣ |xi − xj|2

d2
ij

− 1

∣∣∣∣∣ : i, j = 1, . . . , k, i 6= j, dij < ε

}
.
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Towards an algorithm: discrete setting #2

Proposition

Let (xk
i )

k
i=1 ∈ (Rn)k be a minimizer of Fε,k with ε < ε0 over

Xk :=
{

((xi)
k
i=1 ∈ (Rn)k : |xi − xj| ≥ C2dij, i, j = 1, . . . , k

}
.

Then up to a subsequence xk
i → xi as k→∞, and

dij(1− C1ε) ≤ |xi − xj| ≤ dij(1 + C1ε),

whenever dij < ε, and

dij(1− C1ε) ≤ dΣ(xi, xj) ≤ dij(1 + C1ε)

for all {i, j} ⊂ N.
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An algorithm: convex programming

Define Kij := xi · xj (Gram matrix of a set of vectors {xi}),

Gε,k(x1, . . . , xk) := max

{∣∣∣∣∣Kii + Kjj − 2Kij

d2
ij

− 1

∣∣∣∣∣ : i, j = 1, . . . , k, i 6= j, dij < ε

}
.

Problem: minimize G over the set of positive semidefinite matrices K
satisfying the set of linear constraints

Kii + Kjj − 2Kij ≥ C2
2d2

ij, i, j = 1, . . . , k.
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An algorithm: even better, semidefinite programming
#1

Adding a scalar variable t ∈ R:

minimize t over the pairs (t,K) subject to

− td2
ij ≤ Kii + Kjj − 2Kij − d2

ij ≤ td2
ij,

for all i, j = 1, . . . , k, i 6= j, dij < ε,

Kii + Kjj − 2Kij ≥ C2
2d2

ij,

for all i, j = 1, . . . , k, i 6= j,

K positive semidefinite k × k matrix.

All constraints linear except the last one (which is convex cone
constraint).
Seemingly (but not really!) similar to maximum variance unfolding
algorithm (MVU).

Eugene Stepanov Reconstructing intrinsic manifolds 24 / 34



An algorithm: even better, semidefinite programming
#1

Adding a scalar variable t ∈ R:

minimize t over the pairs (t,K) subject to

− td2
ij ≤ Kii + Kjj − 2Kij − d2

ij ≤ td2
ij,

for all i, j = 1, . . . , k, i 6= j, dij < ε,

Kii + Kjj − 2Kij ≥ C2
2d2

ij,

for all i, j = 1, . . . , k, i 6= j,

K positive semidefinite k × k matrix.

All constraints linear except the last one (which is convex cone
constraint).
Seemingly (but not really!) similar to maximum variance unfolding
algorithm (MVU).

Eugene Stepanov Reconstructing intrinsic manifolds 24 / 34



An algorithm: even better, semidefinite programming
#2

Reconstruction of a unit sphere from pairwise distances. Top line,
columns 1 and 2: points on a grid on the sphere. Top line, columns 3
and 4: the recovered points of the unit sphere. Bottom line, columns 1
and 2: points drawn from the uniform distribution on unit sphere.
Bottom line, columns 3 and 4: the recovered points from approximate
geodesic distances.
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Problems and challenges

Slow algorithm (number of unknowns O(N2), where N is the
number of data points). Can one do, e.g. O(N log N)? Fast
algorithms for topological data analysis?
Hypotheses on curvature/reach essential, but cannot be deduced
from the data!
Problems with biological/phylogeny applications? Natural e.g. for
3D molecule reconstruction from NMR data.
Too many solutions! E.g. a bent sheet of paper is
indistinguishable from the flat one.
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Topological data analysis: computing Čech
cohomologies #1

M and Σ := f (M) are homeomorphic (even biLipschitz equivalent)
Let

Λ ⊂ N be a finite set of indices such that {Yλ} is a finite δ-net of of
M (equipped with dM),
CΣ(r) the Čech complex built on the euclidean balls Br(Xλ),
Xλ := f (Yλ),
CM(r) the Čech complex built on the euclidean balls Br(Yλ).

The vertices of these complexes may be considered the same (namely,
the set of vertices of all them may be identified with the index set Λ).
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Topological data analysis: computing Čech
cohomologies #2

Proposition

Let σ and δ be small enough (below some precise threshold depending
on Reach M), Then H∗(CΣ(σ);R) ' H∗(M;R), H∗ standing for the
Čech cohomology.
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Topological data analysis: computing Čech
cohomologies #3

Remark
One may take Yλ to be drawn by sampling M in i.i.d. way according to
the volume measure on M. In fact if #Λ > n(M, ρ, p), then

M ⊂
⋃
λ

Bρ(Ȳλ)

with probability at least 1− p and the number n(M, ρ, p) depends
explicitly, besides ρ and p, also on the total volume and the dimension
of M.
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Evolutionary space

Just to recall: SILVA database: datasets of aligned small (16S/18S,
SSU) and large subunit (23S/28S, LSU) ribosomal RNA (rRNA)
sequences for all three domains of life (Bacteria, Archaea and
Eukarya).
Currently more than 9 mln rRNA sequences.
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Structure of evolutionary space? #1
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Structure of evolutionary space? #2
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Structure of evolutionary space? #3
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