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How to study evolution

@ Before 1960s: trees based on expert opinion and on
morphological data (types of eyes, number of legs etx); informal
methods;
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How to study evolution

@ Before 1960s: trees based on expert opinion and on
morphological data (types of eyes, number of legs etx); informal
methods;

@ Later: more objective data including molecular biology/genomic
data; formal methods;
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How to study evolution

@ Before 1960s: trees based on expert opinion and on
morphological data (types of eyes, number of legs etx); informal
methods;

@ Later: more objective data including molecular biology/genomic
data; formal methods;

@ Since mid 1990s-2000: using information on evolutionary
distances
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Evolution pattern: a phylogenetic tree?

What is the evolutionary
pattern?
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Evolution pattern: an embedding?

What is the evolutionary
pattern?

)

Classic phylogeny
does not operate
with empty places

How to read this evolutionary message?
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Linnaeus classification system principles

The natural system, unlike the catalogue list "by
itself indicates even missed plants..."

Carl Linnaeus “Philosophia botanica”

Some authors look at it (the Natural System)
merely as a scheme for arranging together
those living objects which are most alike, and

for separating those which are most unlike.

Charles Darwin “Origin of species”
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Evolution: basic hypotheses

The evolutionary process in the Evolutionary space
probably looks like (expectations):

Irrevesible (Dollo’s law)
Radial (in case of there was no HGT caused 16S rRNA gene
mosaicism)

Extention form the LCA point (if the LCA hypothesis is true for
Bacteria)
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Isometric embedding in a Euclidean space?

(E,d) — finite metric space. Find f: E — R" isometry, i.e.

f(x) =fO)] = d(x,).
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Isometric embedding in a Euclidean space?

(E,d) — finite metric space. Find f: E — R" isometry, i.e.

f(x) =fO)] = d(x,).

3 points embed isometrically in R?, but already 4 may not embed in any
R™...
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Isometric embedding in a Euclidean space

Schoenberg theorem: criterium based on the matrix {g;},
1
gij = E(d%i +di;—d) where d; == d(x;,x;) :

(E,d) is isometrically embeddable in R", iff {g;;} is positive
semidefinite.
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Isometric embedding in a Euclidean space

Schoenberg theorem: criterium based on the matrix {g;},
1
gij = E(d%i +di;—d) where d; == d(x;,x;) :

(E,d) is isometrically embeddable in R", iff {g;;} is positive
semidefinite.

Equivalently, Blumenthal (Cayley-Menger) theorem: criterium based on
Cayley-Menger determinants (express volumes of euclidean
simplices):

0 d& db ... d5 1
d%l (; dy ... dgk 1
& d, 0 ... dy 1
&, dy dy ... 0 1
| T I |
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Isometric embedding in a Euclidean space

Schoenberg theorem: criterium based on the matrix {g;},
1
gij = E(d%i +di;—d) where d; == d(x;,x;) :

(E,d) is isometrically embeddable in R", iff {g;;} is positive
semidefinite.

Equivalently, Blumenthal (Cayley-Menger) theorem: criterium based on
Cayley-Menger determinants (express volumes of euclidean
simplices):

0 d& db ... d5 1
d%l (; dy ... dgk 1
& d, 0 ... dy 1
&, dy dy ... 0 1
| T I |

Algorithm: multidimensional scaling (MDS).
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Evolutionary space

SILVA database: datasets of aligned small (16S/18S, SSU) and large
subunit (235/28S, LSU) ribosomal RNA (rRNA) sequences for all three
domains of life (Bacteria, Archaea and Eukarya).

Currently more than 9 min rRNA sequences.

silva‘i

high quality ribosomal RNA databases
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Isometric embedding in a Euclidean space

Distance geometry: applications in

@ telecommunication networks (e.g. GPS): identify the positions of
objects (ships, sensors) known distances between them;
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Isometric embedding in a Euclidean space

Distance geometry: applications in

@ telecommunication networks (e.g. GPS): identify the positions of
objects (ships, sensors) known distances between them;

@ (bio)chemistry: reconstruct the 3D structure of a protein molecule
from the distances between atoms (NMR data).
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BiLipschitz embedding in a Euclidean space

Theorem (J. Bourgain 1985)

Let#E = N. Then (E,d) can be embedded biLipschitz into R" with
n = O(log> N) and distortion O(log N), i.e. there is anf: E — R" with

d(x,y) < |f(x) —f(v)| < Cd(x,y)
with C = O(logN).
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BiLipschitz embedding in a Euclidean space

Theorem (J. Bourgain 1985)

Let#E = N. Then (E,d) can be embedded biLipschitz into R" with
n = O(log> N) and distortion O(log N), i.e. there is anf: E — R" with

d(x,y) < |f(x) —f(v)| < Cd(x,y)

with C = O(logN).

Very similar to Johnson-Lindenstrauss lemmma: just to compare,

Theorem (Johnson-Lindenstrauss 1984)

Let#E =N, E C R". Then (E, | - |) can be for every e > 0
“compressed” into R" with n = O(log N/e*) and distortion 1 + ¢, i.e.
there is a biLipschitz (almost isometric) embdeeding f : E — R" with

d(x,y) < |f(x) —f(y)| < (1 +&)d(x,y).
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Reconstructing a manifold from intrinsic distances #1

M unknown (compact) smooth Riemannian manifold, {y;} C M (say, a

dense set) (or, in probabilistic setting, i.i.d. random points with uniform
law)

Eugene Stepanov Reconstructing intrinsic manifolds



Reconstructing a manifold from intrinsic distances #1

M unknown (compact) smooth Riemannian manifold, {y;} C M (say, a

dense set) (or, in probabilistic setting, i.i.d. random points with uniform
law)

dij := dy(yi,yj) known
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Reconstructing a manifold from intrinsic distances #1

M unknown (compact) smooth Riemannian manifold, {y;} C M (say, a

dense set) (or, in probabilistic setting, i.i.d. random points with uniform
law)

dj := dM(yi,yj) known
Can one reconstruct an M abstract manifold from intrinsic distances?
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Reconstructing a manifold from intrinsic distances #2

Goal: M — %, y; — x;,
ds(xi, %) = dm(yi, j)

(isometric embedding), or
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Reconstructing a manifold from intrinsic distances #2

Goal: M — X, y; = x;,
dx (xi, ;) = du(yi, j)
(isometric embedding), or
(1 = &)dm(yi,y;) < ds(xi,x5) < (14 €)du(yi, ¥)),

e > 0 small.
(almost isometric embedding)
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Reconstructing a manifold from intrinsic distances #2

Goal: M — %, y; — x;,

ds (xi, x;) = du(yi, y))
(isometric embedding), or

(1 —€)du(yi,yj) < ds(xi,x) < (14 ¢)du(yi, yj)s

e > 0 small.
(almost isometric embedding)
Algorithms

@ MDS (Multidimensional scaling).
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Reconstructing a manifold from intrinsic distances #2

Goal: M — %, y; — x;,

ds (xi, x;) = du(yi, y))
(isometric embedding), or

(1 —€)du(yi,yj) < ds(xi,x) < (14 ¢)du(yi, yj)s
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distances only! It is genuinely believed that nevertheless, it
reconstructs intrinsic distances.
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Reconstructing a manifold from intrinsic distances #2

Goal: M — X, y; = x;,
dx (xi, ;) = du(yi, j)
(isometric embedding), or
(1 = &)dm(yi,y;) < ds(xi,x5) < (14 €)du(yi, ¥)),

e > 0 small.

(almost isometric embedding)

Algorithms

@ MDS (Multidimensional scaling).Most frequently used (in one of

numerous modifications). Originally designed for euclidean
distances only! It is genuinely believed that nevertheless, it
reconstructs intrinsic distances. See e.g.
Jianzhong Wang. Geometric structure of high-dimensional data
and dimensionality reduction. Springer.
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Reconstructing a manifold from intrinsic distances #2

Goal: M — X, y; = x;,
dx (xi, ;) = du(yi, j)
(isometric embedding), or
(1 = &)dm(yi,y;) < ds(xi,x5) < (14 €)du(yi, ¥)),

e > 0 small.
(almost isometric embedding)
Algorithms
@ MDS (Multidimensional scaling).Most frequently used (in one of
numerous modifications). Originally designed for euclidean
distances only! It is genuinely believed that nevertheless, it
reconstructs intrinsic distances. See e.g.
Jianzhong Wang. Geometric structure of high-dimensional data
and dimensionality reduction. Springer.
@ MVU (maximum variance unfolding).
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Reconstructing a manifold from intrinsic distances #3

@ C. Fefferman, S. Ivanov, Ya. Kurylev, M. Lassas, H. Narayaman.
Reconstruction and Interpolation of Manifolds |: The geometric
Whitney problem.
https://arxiv.org/pdf/1508.00674.pdf

@ C. Fefferman, S. Ivanov, M. Lassas, H. Narayaman.
Reconstruction of a Riemannian manifold from noisy intrinsic
distances. https://arxiv.orqg/pdf/1905.07182.pdf
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Reconstructing a manifold from intrinsic distances #3

@ C. Fefferman, S. Ivanov, Ya. Kurylev, M. Lassas, H. Narayaman.
Reconstruction and Interpolation of Manifolds |: The geometric
Whitney problem.
https://arxiv.org/pdf/1508.00674.pdf

@ C. Fefferman, S. Ivanov, M. Lassas, H. Narayaman.
Reconstruction of a Riemannian manifold from noisy intrinsic
distances. https://arxiv.orqg/pdf/1905.07182.pdf

One can reconstruct an abstract manifold from intrinsic distances
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Reconstructing a manifold from intrinsic distances #3

@ C. Fefferman, S. Ivanov, Ya. Kurylev, M. Lassas, H. Narayaman.
Reconstruction and Interpolation of Manifolds |: The geometric
Whitney problem.
https://arxiv.org/pdf/1508.00674.pdf

@ C. Fefferman, S. Ivanov, M. Lassas, H. Narayaman.
Reconstruction of a Riemannian manifold from noisy intrinsic
distances. https://arxiv.orqg/pdf/1905.07182.pdf

One can reconstruct an abstract manifold from intrinsic distances
without changing too much sectional curvatures
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How to reconstruct the embedding: curvature/reach

conditions are essential

(Square) flat torus isometric embedding in R? by Nash-Kuiper theorem
(only C") via Gromov convex integration construction:

Hevea project: http://hevea-project.fr/
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Most popular approach: MDS #1

Lara Kassab. Multidimensional scaling: Infinite metric measure
spaces.
arXiv:1904.07763, 2019.

Reconstructing S! (with intrinsic distances) from N uniformly distributed
points

@ produces the closed curve ~y: [0,27] — R”" defined by
"yN(t) =
(a) cos(t),a) sin(r), ..., a5 cos((2k + 1)), a5, sin((2k + 1)z),...)

where limy a) = a; := v/2/j (with j odd).
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Most popular approach: MDS #1

Lara Kassab. Multidimensional scaling: Infinite metric measure
spaces.
arXiv:1904.07763, 2019.

Reconstructing S! (with intrinsic distances) from N uniformly distributed
points

@ produces the closed curve ~y: [0,27] — R”" defined by
"yN(t) =
(a) cos(t),a) sin(r), ..., a5 cos((2k + 1)), a5, sin((2k + 1)z),...)

where limy a) = a; := v/2/j (with j odd).
@ optimal dimension infinite (¢* instead of R"),
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Most popular approach: MDS #1

Lara Kassab. Multidimensional scaling: Infinite metric measure
spaces.
arXiv:1904.07763, 2019.

Reconstructing S! (with intrinsic distances) from N uniformly distributed
points

@ produces the closed curve ~y: [0,27] — R”" defined by
v (t) =
(a) cos(t),a) sin(r), ..., a5 cos((2k + 1)), a5, sin((2k + 1)z),...)
where limy a) = a; := v/2/j (with j odd).

@ optimal dimension infinite (¢* instead of R"),
@ one can show

|v(2) — v(s)| = 2v/7|t — s|1/2_
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Most popular approach: MDS #1

Lara Kassab. Multidimensional scaling: Infinite metric measure
spaces.
arXiv:1904.07763, 2019.

Reconstructing S! (with intrinsic distances) from N uniformly distributed
points

@ produces the closed curve ~y: [0,27] — R”" defined by
v (t) =
(a) cos(t),a) sin(r), ..., a5 cos((2k + 1)), a5, sin((2k + 1)z),...)
where limy a) = a; := v/2/j (with j odd).

@ optimal dimension infinite (¢* instead of R"),
@ one can show

|v(2) — v(s)| = 2v/7|t — s|1/2_

snowflake instead of a circumference; NO ISOMETRY!
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Most popular approach: MDS #1

Lara Kassab. Multidimensional scaling: Infinite metric measure
spaces.
arXiv:1904.07763, 2019.

Reconstructing S! (with intrinsic distances) from N uniformly distributed
points

@ produces the closed curve ~y: [0,27] — R”" defined by

"yN(t) =
(a) cos(t),a) sin(r), ..., a5 cos((2k + 1)), a5, sin((2k + 1)z),...)

where limy a) = a; := v/2/j (with j odd).
@ optimal dimension infinite (¢* instead of R"),
@ one can show

|v(2) — v(s)| = 2v/7|t — s|1/2_

snowflake instead of a circumference; NO ISOMETRY! But still a
homeomorphism...
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Most popular approach: MDS #2

0.0004 0.0002 0.0000—0.0002-0.0004

.0010
.0005
.0000

.0005

.0010

—0.0015

The two-dimensional sphere S? reconstructed by MDS.
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Variational approach for manifold reconstruction #1

M compact smooth submanifold in R":
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Variational approach for manifold reconstruction #1

M compact smooth submanifold in R": M C R”,

Reach M :=
{p > 0: every x € (M), has a unique projection on M} > 0.

(normal injectivity radius from M)
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Variational approach for manifold reconstruction #1

M compact smooth submanifold in R": M C R”,

Reach M :=
{p > 0: every x € (M), has a unique projection on M} > 0.

(normal injectivity radius from M)
Yx C M closed sets (“data points”), ¥ — M in Hausdorff distance.
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Variational approach for manifold reconstruction #1

M compact smooth submanifold in R": M C R”,

Reach M :=
{p > 0: every x € (M), has a unique projection on M} > 0.

(normal injectivity radius from M)
Yx C M closed sets (“data points”), ¥ — M in Hausdorff distance.
Fixed an ¢ > 0 and a k € N, define the functionals

F.p: C(M;R") - R,F.: CM;R") - R
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Variational approach for manifold reconstruction #1

M compact smooth submanifold in R": M C R”,
Reach M :=
{p > 0: every x € (M), has a unique projection on M} > 0.

(normal injectivity radius from M)

Yx C M closed sets (“data points”), ¥ — M in Hausdorff distance.
Fixed an ¢ > 0 and a k € N, define the functionals

F.p: C(M;R") - R,F.: CM;R") - R

by the formula

dyy(x,y)

F.(f) := SUP{‘W — 1‘ 10 < dy(x,y) Ss}.

Feslf) = sup{\w 1] ) €m0 <ty <.
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Variational approach for manifold reconstruction #2

Theorem

There are ¢y, Cy, C; (depending on ReachM and diamM), such that
the variational problems

min {F.x(f): f € C}, where (Po)
C = {f € C(M : R"),f(x0) = 0, [f (x) — ()| = Cadpr(x,7)}, ¢

have solutions for every k € N, ¢ < &.
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Variational approach for manifold reconstruction #2

Theorem

There are ¢y, Cy, C; (depending on ReachM and diamM), such that
the variational problems

min {F.x(f): f € C}, where (Po)
C = {f € C(M : R"),f(x0) = 0, [f (x) — ()| = Cadpr(x,7)}, ¢

have solutions for every k € N, e < ¢¢. Iffi solves (Py), then up to a
subsequence limy f;, = f, where f solves

min {F.(f): f € C} (P)

Eugene Stepanov Reconstructing intrinsic manifolds
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Variational approach for manifold reconstruction #3

Moreover,
dy(x,y)(1 = Cie) < [f(x) = f(y)] < du(x, y)(1 + Cie), (1)
if dy(x,y) < e, and
dy(x,y)(1 — Cie) < ds(f(x),f(y)) < du(x,y)(1 + Cie), ()

where ¥ := f(M).
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Variational approach for manifold reconstruction #3

Moreover,
dy(x,y)(1 = Cie) < [f(x) = f(y)] < du(x, y)(1 + Cie), (1)
if dy(x,y) < e, and
dy(x,y)(1 — Cie) < ds(f(x),f(y)) < du(x,y)(1 + Cie), ()

where ¥ := f(M). N.B. fy(M) — ¥ in Hausdorff distance.
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Towards an algorithm: discrete setting #1

Let {y;} € M be a dense setin M,

dij = du(yi,yj)-
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Towards an algorithm: discrete setting #1

Let {y;} € M be a dense setin M,

dij = du(yi,yj)-

Fixed an ¢ > 0 and a k € N, define the functional F. ;: (R")* — R by
the formula

i — x?
2
ij

Fop(xi, ... x) == max{ -1

:i,jzl,...,k,i;éj,dij<g},
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Towards an algorithm: discrete setting #2

Proposition
Let (x¥)%_, € (R")* be a minimizer of F.; with e < &y over
X = {((w)e, € RN |xi — x5 > Cadyyij=1,...,k}.
Then up to a subsequence xt — x; as k — oo, and
di(1 - Cie) < |xi — x5 < dy(1 + Cie),
whenever d;; < ¢, and

d,'j(l — le;‘) S dg(x,-,xj) S d,'j(l + C]é‘)

for all {i,j} C N.
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An algorithm: convex programming

Define Kj; := x; - x; (Gram matrix of a set of vectors {x;}),

Kii + Kjj — 2K;

Gei(x1,...,X) := max > R
dij

:i,jzl,...,k,i;éj,dlj<5}
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An algorithm: convex programming

Define Kj; := x; - x; (Gram matrix of a set of vectors {x;}),

Kii + Kjj — 2K;

j - L |
=1 :ij=1,.. ki#jd;j<e
j

Gei(x1,...,X) := max {

Problem: minimize G over the set of positive semidefinite matrices K
satisfying the set of linear constraints

Ki+Kj —2K; > Cadpij=1,... k.
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An algorithm: even better, semidefinite programming

#1

Adding a scalar variable ¢ € R:

minimize ¢ over the pairs (¢,K) subjectto

—tdy; < Kii + Kjj — 2Ky — dj; < tdj,

foralli,j=1,...,ki#j,d; <e,
Kii + Kjj — 2K > ngizj
foralli,j=1,...,ki#],

K positive semidefinite k x k matrix.
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An algorithm: even better, semidefinite programming

#1
Adding a scalar variable ¢ € R:

minimize ¢ over the pairs (¢,K) subjectto

—tdy; < Kii + Kjj — 2Ky — dj; < tdj,

foralli,j=1,...,ki#j,d; <e,
Kii + Kjj — 2K > ngizj
foralli,j=1,...,ki#],

K positive semidefinite k x k matrix.

All constraints linear except the last one (which is convex cone
constraint).

Seemingly (but not really!) similar to maximum variance unfolding
algorithm (MVU).
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An algorithm: even better, semidefinite programming
#2

Reconstruction of a unit sphere from pairwise distances. Top line,
columns 1 and 2: points on a grid on the sphere. Top line, columns 3
and 4: the recovered points of the unit sphere. Bottom line, columns 1
and 2: points drawn from the uniform distribution on unit sphere.
Bottom line, columns 3 and 4: the recovered points from approximate
geodesic distances.
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Problems and challenges

@ Slow algorithm (number of unknowns O(N?), where N is the
number of data points). Can one do, e.g. O(NlogN)?
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Problems and challenges

@ Slow algorithm (number of unknowns O(N?), where N is the
number of data points). Can one do, e.g. O(N log N)? Fast
algorithms for topological data analysis?

@ Hypotheses on curvature/reach essential, but cannot be deduced
from the data!

Problems with biological/phylogeny applications?
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Problems and challenges

@ Slow algorithm (number of unknowns O(N?), where N is the
number of data points). Can one do, e.g. O(N log N)? Fast
algorithms for topological data analysis?

@ Hypotheses on curvature/reach essential, but cannot be deduced
from the data!
Problems with biological/phylogeny applications? Natural e.g. for
3D molecule reconstruction from NMR data.
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Problems and challenges

@ Slow algorithm (number of unknowns O(N?), where N is the
number of data points). Can one do, e.g. O(N log N)? Fast
algorithms for topological data analysis?

@ Hypotheses on curvature/reach essential, but cannot be deduced
from the data!
Problems with biological/phylogeny applications? Natural e.g. for
3D molecule reconstruction from NMR data.

@ Too many solutions! E.g. a bent sheet of paper is
indistinguishable from the flat one.
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Topological data analysis: computing Cech

cohomologies #1

M and X := f(M) are homeomorphic (even biLipschitz equivalent)
Let

@ A C N be a finite set of indices such that {Y,} is a finite §-net of of
M (equipped with dy,),

@ Cyx(r) the Cech complex built on the euclidean balls B,(X,),
Xy :=f(Yy),

@ Cy(r) the Cech complex built on the euclidean balls B,(Yy).

The vertices of these complexes may be considered the same (namely,
the set of vertices of all them may be identified with the index set A).

Eugene Stepanov
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Topological data analysis: computing Cech

cohomologies #2

Proposition

Let o and § be small enough (below some precise threshold depending
on ReachM), Then H*(Cx(0); R) ~ H*(M;R), H* standing for the
Cech cohomology.
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Topological data analysis: computing Cech

cohomologies #3

Remark
One may take Y, to be drawn by sampling M in i.i.d. way according to
the volume measure on M. In fact if #A > n(M, p,p), then

M C | JB,(Y)
A

with probability at least 1 — p and the number n(M, p, p) depends
explicitly, besides p and p, also on the total volume and the dimension

of M. )
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Evolutionary space

Just to recall: SILVA database: datasets of aligned small (16S/18S,
SSU) and large subunit (23S/28S, LSU) ribosomal RNA (rRNA)

sequences for all three domains of life (Bacteria, Archaea and
Eukarya).

Currently more than 9 min rRNA sequences.

silva‘i

high quality ribosomal RNA databases
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Structure of evolutionary space? #1

Series of selected orthogonal sgctions through the Evolutiongry space

o Proteobacteria &
* Bacteroidetes 242 1-3
© Cyanobacteria
* others
Actinobacteria
* Firmicutes
Chioroflexi
Acidobacteria
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Structure of evolutionary space? #2

«The evolutionary gun» «The evolutionary
candley,.. ...

210

Proteobacteria

Cyanobacteria The younge

i Evolutionary
hollow?

Chloroplasts

The last common ancestor of
Bacteria?
The oldest Evolutionary hollow?
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Structure of evolutionary space? #3

Evolutionary events on the late stages of evolution
near the functional boundary of the gene

Functional boundary Evolutionary collapse
dS>>>dN (for coding Gene death?
seqs) il Gene substitution?
Gene
teleportation?
- - =
-

’
’

= PN - ~ -~ PRRN
~ -’ ~ , ~ P ) ~
» . \r-\ , ~
4 L]
W
*

The LCA

We can try to find these events in
“rapid” genes, “rapid” taxa, “rapid”
niches
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