

July 2021, Offshell 2021

Studies of the H->bb process at the LHeC using a full simulation

S. Behera, M. Schott, B. Brickwedde

Some facts about Mainz

- Mainz is small town, but capital of Rhineland-Palatinate
 - Next to the river Rhine (with some quite nice castles)
 - 20 Minutes from Frankfurt International Airport
 - Founded by romans 2K years ago
 - The cathedral is only 1000 years old (and burnt down several times)
- Time-Magazine's man of the millennium:
 - Johannes Gutenberg, who invented the printing press in Mainz

The Johannes Gutenberg University

- Founded in 1477 and reopened by the French occupation forces in 1946
 - 37.000 students for all subjects (bachelor, master, PhD) and Postdoc
 - German cluster of excellence PRISMA for fundamental physics
 - Since September 2018: PRISMA+
- Own electron accelerator MAMI and research reactor
 - 60 physics professors and research groups: LHC, IceCube, Xenon, SOX, NA62, JUNO, ALPS,

Higgs Production in proton electron collisions

Higgs Production

- Higgs production in electron proton collisions via vector boson fusion
 - Charged Current (CC): Neutrino + forward jet + Higgs-decay products
 - Neutral Current (NC): Electron + forward jet + Higgs-decay production
- Cross-Section Calculation has been in several previous studies
 - Leading order: Scale-dependencies in the order of 5-10%
 - Inclusive NLO QCD corrections can induce shape dependencies
 - [J. Blumlein, G.J. van Oldenborgh, R. Ruckl, Nucl.Phys.B395:35-59,1993]
 - [B.Jager, arXiv:1001.3789]
 - [LHeC CDR: arXiv: 2007.14491]

Background processes for H->bb

Neutral Current Interactions

- Dijet (2 b) production
- Top-quark pair production
- Z-Boson Production

Charged Current Interactions

- Three parton final states
- Z boson production
- Single Top

Photon-Production

- Pair production of two quarks, induced by virtual photon from electron
- Theoretical uncertainty of this process is rather high

The LHeC Collider and Previous Studies

The LHeC Project

- Idea: Collide Protons from the LHC with electrons from an ERC electron accelerator
 - Two 802 MHz Electron LINACs + return arcs: using energy recovery technology
 - $E_e = 60 \text{ GeV}, E_p = 7 \text{ TeV},$
 - CME: ~ 1.3 TeV
 - ep peak lumi 10³⁴ cms⁻² s⁻¹
 - Possibility to polarize electrons P=-80%
 - Expected integrated luminosity: 1ab⁻¹
- Expected Higgs Production
 Cross Sections
 - σ_{cc} =196 fb (109 fb w.o. pol.)
 - σ_{NC} =25 fb (21 fb w.o. pol.)

[LHeC CDR: arXiv: 2007.14491]

The LHeC Detector

- Tracking Detector
 - Resolution 10⁻³ GeV⁻¹
 - Coverage $|\eta| < 3.3$
- Electromagnetic and Hadronic Calorimeter
 - Coverage $-4.3 < \eta < 4.9$
 - Dedicated Calorimeters at the end cap for the measurements of scattered electrons (not simulated)
- Magnet System: 3.5 T
- Muon Tracking System
 - Coverage $|\eta| < 4.7$

[LHeC CDR: arXiv: 1211.4831]

Prospects of the Higgs at the LHC

- Lots of work already done in the past years: Full performance can be only reached with MVA based analyses
 - [LHeC CDR: arXiv: 2007.14491], [U. Klein: ICHEP 2020, July 29th, 2020], ...
 - A precision on H->bb below 1% reachable at the LHeC, but very difficult channels at the LHC (Similar for charm-quark decay mode)

- Caveat: All these studies are based on Fast Simulations.
 - Our goal: Confirm these prospects with a full detector simulation and state-of-the-art

The Cut-Based Analysis

- While the full sensitivity of the LHeC requires a MVA type analysis, a simple cut-based analysis was also published within arXiv: 2007.14491
 - The cut-based approach will be used for our validation of the fast simulation as it allows to test directly the impact of different kinematic observables
- We assume that all NC background processes will be effectively reduced by 90% using a forward electron tagger and hence become negligible.
 - The case when no electron tagger is present will be also discussed

- Observables
 - Jets, reconstructed with anti-kT algorithm with cone size of R = 0.4
- Selection Cuts
 - Kinematic Requirements (DIS)
 - $E_T^{\text{Miss}} > 60 \text{ GeV}, y_h < 0.9, Q_h^2 > 500 \text{ GeV}$
 - Jet Requirements
 - $p_T>25 \text{ GeV}$
 - 2 b-tagged jets
 - Top-background veto
 - m(bbj)>250 GeV, m(bj)>130 GeV
 - At least one forward jet $(\eta > 2.0)$
 - $\Delta \phi(E_T^{\text{Miss}}, \text{ b-jet}) > 0.2$

How to validate these results using a full simulation?

Basic Idea

- The development of a full detector simulation is a huge task which takes several years
 - Not even speaking of the development of state-of-the-art reconstruction algorithms
- Observation: The kinematic constraints of the future LHeC detector and the current ATLAS at the LHC are not so different
 - The minimal p_T requirement of the b-quarks forces them in the more central rapidity region
- Idea: Compare a simple H->bb study based on a fast ATLAS simulation using on Delphes with the full ATLAS Simulation

MC Samples and Fast Simulations

- All samples have been generated with MadGraph5
- Showering and Hadronization with Pythia8
 - Cross-Checks with Pythia6
- All cross sections which have been previously reported could be validated
 - reduce in photo-production
 CS is possible due to the fact that we demand 2b
 -jets in the final state.
- Fast Detector Simulation with the DELPHES Framework
 - Standard LHeC card available from LHeC study Group.

Short	Process	Generator-Level Cuts	Generator	Cross Section	Number Of
Description				[pb]	Events $\times 10^3$
Signal	$pe^- ightarrow u_e h q ightarrow u_e b ar{b} q$	$ \eta < 10, \ m_{jj} > 60$	MadGraph5+	0.09997^3	150
			Pythia8		
CC-qqq	$pe^- ightarrow u_\ell qqq$	$p_{\mathrm{T}}^{q} > 10 \; GeV, p_{\mathrm{T}}^{b} > 10 \; GeV,$	MadGraph5+	5.49074	214
	(w.o. $Z,\mathrm{H},t,ar{t}$)	$ \eta < 10, \ m_{jj} > 70, \ m_{bb} > 70$	Pythia8		
CC-top	$pe^- ightarrow u_\ell ar t q$	$p_{\mathrm{T}}^{q} > 10 \; GeV, p_{\mathrm{T}}^{b} > 10 \; GeV,$	MadGraph5+	0.36820	137
		$ \eta < 10, \ m_{jj} > 70, \ m_{bb} > 70$	Pythia8		
CC-Z	$pe^- o zq u_\ell, o bar b q u_\ell$	$p_{\mathrm{T}}^{q} > 10 \ GeV, p_{\mathrm{T}}^{b} > 12 \ GeV,$	MadGraph5+	0.13631	107
		$ \eta^q < 5.5, \eta^b < 5.5, \eta^\gamma < 5,$	Pythia8		
		$ \eta^{\ell} < 5, \ m_{jj} > 60, \ m_{bb} > 60$			
Photo-qqq	$p\gamma o bar{b}q$	$p_{\mathrm{T}}^{q} > 12 \; GeV, p_{\mathrm{T}}^{b} > 19 \; GeV,$	MadGraph5+	0.90876	100
		$ \eta^q < 5.2, \eta^b < 3.5, \eta^\gamma < 10,$	Pythia8		
		$ \eta^{\ell} < 10, \ m_{jj} > 115, \ m_{bb} > 115$			
PA-tt	$p\gamma ightarrow tar{t} ightarrow bqqar{b}qq$	$p_{\mathrm{T}}^{q} > 10 \; GeV, p_{\mathrm{T}}^{b} > 12 \; GeV,$	MadGraph5+	0.00876	100
		$ \eta^q < 5.5, \eta^b < 4, \eta^\gamma < 10$	Pythia8		
		$ \eta^{\ell} < 10, \ m_{jj} > 80, \ m_{bb} > 80$			
NC-Z	$pe^- o Zqe^- o b\bar{b}qe^-$	$p_{ m T}^q > 10~GeV, p_{ m T}^b > 12~GeV$	MadGraph5+	0.02246	100
		$, p_{\mathrm{T}}(\ell) > 0.01 \; GeV, \eta^q < 5.5, \eta^b < 5.5,$	Pythia8		
		$ \eta^{\gamma} < 10, 4 < \eta^{\ell} < 10, \ m_{jj} > 60, \ m_{bb} > 60$			
NC-bbq	$pe^- ightarrow e^- b ar{b} q$	$p_{\mathrm{T}}^{q} > 10 \; GeV, p_{\mathrm{T}}^{b} > 12 \; GeV,$	MadGraph5+	2.37302	100
		$p_{\mathrm{T}}(\ell) > 0.01 \; GeV, \eta^q < 5.5, \eta^b < 4$	Pythia8		
		$, \eta^{\gamma} < 10, 4 < \eta^{\ell} < 10, \ m_{jj} > 80, \ m_{bb} > 80$			
NC-tt	$pe^- \rightarrow e^- t \bar{t} \rightarrow e^- b q q \bar{b} q q$	$p_{\mathrm{T}}^{q} > 10 \; GeV, p_{\mathrm{T}}^{b} > 12 \; GeV,$	MadGraph5+	0.81091	100
		$p_{\mathrm{T}}(\ell) > 0.01 \; GeV, \eta^q < 5.5, \eta^b < 4,$	Pythia8		
		$ \eta^{\gamma} < 10, 4 < \eta^{\ell} < 10, \ m_{jj} > 80, \ m_{bb} > 80$			

Full Simulation: Using the ATLAS Softwareframework Athena

- The major task of this study was to operate the ATLAS Software framework ATHENA without any resources from the ATLAS Collaboration
 - Software is open source and available under
 - https://gitlab.cern.ch/atlas
 - Simulation is based on Geant4
 - Digitalization and state of the art reconstruction algorithms are developed by the ATLAS Collaboration
- Several modifications had to be performed in order to run ATHENA on our University Cluster Mogon
 - e.g. some steps required a connection to databases at CERN, which had to be emulated (We cannot connect from Mogon to the outside world)

Results

Validation of the official LHeC cut-based analysis

CDR selection cuts have been applied

- Good agreement in expected signal and background yields within the stat. uncertainties
- Shape Comparison also reasonable
- Exception: CC-Z, where we see 1.8 more events in total and a shape difference

Process	LHeC CDR (Delphes)	This Study (Delphes)
Signal	3720	$3540 {\pm} 50$
CC-qqq	157	200±70
CC-top	329	310±30
CC-Z	173	90±10
Photo-qqq	606	840±90

Comparison between ATLAS and LHeC using a fast simulation

- Moving one step further and compare the H->bb expectations of the simple cut-based analysis if we would perform it at the current ATLAS detector (still fast simulation)
 - We observe a rather consistent cut-flow between ATLAS and LHeC, however differences in the order of 20% are introduced by the jet-requirements
 - Differences in the b-tagging efficiency (i.e. coverage)
 - Differences in the jet-energy resolution

Signal	$_{ m LHeC}$	ATLAS	
Selection	(Delphes)	(Delphes)	
All Events	99970	99970	
No Electron	97100	99941	
Kinematic Cuts	70356	70971	
$({E_{ m T}},Y,Q^2)$			
Jet Requirements	18325	13373	
Top Rejection	6809	6003	
Forward Jet	6745	5878	
$\Delta \Phi(B_{1/2}, E_{ m T}) > 0.2$	5438	4662	
$100 < m_{bb} < 130$	3544	3160	

Comparison between fast and full simulations (1/4)

- 25% less signal events pass in the full detector simulation compared to the fast detector simulastion
 - The MET resolution is significantly worse in the full simulation compared to Delphes (significantly less events pass the MET cut)
 - Jet-energy resolution is worse, yielding a broader m_{bb} spectrum
 - less events pass the m_{bb}
 requirement

Signal	ATLAS	ATLAS	
Selection	(Delphes)	(Full Sim.)	
All Events	99970	99970	
No Electron	99941	98311	
Kinematic Cuts	70971	65236	
$({E_{ m T}},Y,Q^2)$			
Jet Requirements	13373	12738	
Top Rejection	6003	5753	
Forward Jet	5878	5643	
$\Delta \Phi(B_{1/2}, E_{ m T}) > 0.2$	4662	4267	
$100 < m_{bb} < 130$	3160	2480	

Comparison between fast and full simulations (2/4)

- Background is largely consistent between full and fast simulation
- Exception: CC-qqq due to higher fake-rates in the full simulation
 - a b-tagging efficiency different in DFLPHFS and full simulation
 - B-tagging algorithms are not optimized for e-p running in ATLAS
 - Photo-production is not affected too much since we required already 2 b-quarks on MC generator level
- Given that no optimization has been performed, we conclude that an agreement can be reached for the backgrounds

Process	ATLAS (Delphes)	ATLAS (Full Simulation)
Signal	3160±50	$2480{\pm}50$
CC-qqq	430±110	$880 {\pm} 160$
CC-top	480±40	410 ± 35
CC-Z	240±20	$240{\pm}20$
Photo-qqq	1340±110	1660 ± 130
NC-Z	1± 1	0 ±0
NC-bbq	700 ± 130	950 ± 160
NC-tt	$1200{\pm}100$	900±90

Comparison between fast and full simulations (3/4)

 Shapes between full and fast simulation are comparable, however, a broader m_{bb} spectrum is observed

Comparison between fast and full simulations (4/4)

Prof. Dr. M. Schott (Johannes Gutenberg University, Mainz)

Forward Electron Tagging

Why is forward Electron Tagging Important

- No simulation for a forward electron tagger is available in Delphes
- Forward electron tagging would allow to reduce NC backgrounds
 - Eta-distribution of electrons for NC-Z,
 NC-bbq and NC-tt processes are
 reaching up to |η|<10
 - How efficient can be forward electron tagger?
 - In any case: The normalization of those processes could be studied
- The Photo-Production process peaks even more forward
 - Tagging of the full spectrum would be impossible

Results without Forward Electron Tagging

- The expected background contribution at the LHeC from NC processes increases by less than 50%, while the background yields nearly double for the fast and full simulation of ATLAS
 - Main reason is that we do not used forward electrons in our electron-veto selection.
 Hence the situation is expected to be more similar to the case of the LHeC

Preliminary conclusion

 Even without any forward tagging, the Higgs signal stays visible and dedicated selections cuts will enable a significant reduction

Conclusions

What have we learnt?

- How to run the ATHENA-framework without ATLAS resources
- We could (largely) reproduce the cut-based H->bb results of the LHeC CDR
 - Gives us confidence that we don't mess up any important aspect of the analysis
 - Differences in the predicted cross-sections for photon-induced processes and CC-Z production
- When comparing the ATLAS full (Athena) and the ATLAS fast simulation (DELPHES) we see
 - a reduction of signal efficiency by 25%
 - An increase of background yields by 20%
 - A decrease of the signal/background ratio from 1.3 to 0.8

- Assuming reasonable values for systematic uncertainties, we can expect a cross-section uncertainty for H->bb of <2%
 - With more advanced classifiers the signal selection efficiency can be increased by factors, while reducing the background yields
- Caveats
 - Did we forget a background process?
 - In particular photon-production
 - How reliable is the forward electron tagging?
- Is it really impossible to built an LHeC interaction point at ATLAS?
 - ... it seems quite well suited (and will be even better after the upgrade)

Summary

- First study of H->bb process in electron-proton collisions at CME=1.3 TeV using a full detector
- While an reduced S/B background ratio is observed in the full simulation, no experimental show-stoppers are
 - Further consolidation of the excellent physics case
- We plan to conduct further studies using Deep Neural Networks for the signal classification based on the fully