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Anisotropic flow phenomenon

• Transfer of anisotropy from the initial coordinate space into 

the final momentum space via the thermalized medium:
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• J.Y. Ollitrault, Phys. Rev. D 46 (1992) 229



Quark-Gluon Plasma (QGP)

Heavy-ion evolution
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• In the QGP stage quarks are deconfined 

• Anisotropic flow is a sensitive probe of QGP properties (e.g. of its 
shear viscosity)

Phase diagram of QCD



Fourier series

• We use Fourier series to describe anisotropic emission of 

particles in the plane transverse to the beam direction after 

each heavy-ion collision: 
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• 𝒗𝒏 : flow amplitudes

• 𝚿𝒏 : symmetry planes

• Anisotropic flow is quantified with 𝒗𝒏 and 𝚿𝒏

o 𝒗𝟏 is directed flow

o 𝒗𝟐 is elliptic flow

o 𝒗𝟑 is triangular flow

o 𝒗𝟒 is quadrangular flow, etc.

S. Voloshin and Y. Zhang, Z.Phys. C70 (1996) 665-672



Flow observables

• Individual flow harmonics: 𝒗𝟏, 𝒗𝟐, 𝒗𝟑, 𝒗𝟒, …

• Correlations between harmonics: 𝒗𝒎
𝟐 𝒗𝒏

𝟐 − 𝒗𝒎
𝟐 𝒗𝒏

𝟐

• Symmetry plane correlations: cos[𝑚𝑛(Ψ𝑚 −Ψ𝑛)]

• Probability density function: P(vn)

• ...
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Shear vs. bulk viscosities

• Can we separate the effects of shear (η) and bulk (ξ) 

viscosities?
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• Isotropic fluctuations
• Neighbouring layers move at equal velocities

• Generally preserves the ellipse shape

• Main sensitivity to ξ/𝑠

• Shape fluctuations
• Neighbouring layers move at different velocities

• Sensitivity to η/𝑠

Credits: C. Mordasini

• Can we develop new observables with potential to separate 

these different sources of fluctuations?



‘Classical’ flow observables

• Insensitivity to temperature dependence of η/s
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H. Niemi, K. J. Eskola, R. Paatelainen, Phys. Rev. C 93, 024907 (2016)



Symmetric Cumulants SC(m,n)

• How to quantify experimentally the correlation between two 

different flow amplitudes?

o Symmetric Cumulants (Section IVC in Phys. Rev. C 89 (2014) no.6, 064904)
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• SC observables are sensitive to 

differential η/s(T) parametrizations

• Individual flow amplitudes are 

dominated by averages η/s(T)

• Independent constraints both on 

initial conditions and QGP properties  

ALICE Collaboration, Phys. Rev. Lett. 117, 182301 (2016)



Multiparticle correlations and cumulants

11



Multiparticle azimuthal correlations
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• The most general result, which relates multiparticle 

azimuthal correlators and flow degrees of freedom:

R. S. Bhalerao, M. Luzum and J.-Y. Ollitrault, Phys. Rev. C 84 034910 (2011)

• A lot of non-trivial and independent flow observables for 

different choices of harmonics 𝒏𝒊
o Examples: 2- and 4-particle azimuthal correlations 



Multiparticle cumulants

• Consider the following diagram representation of the most 

general decomposition of 3-particle correlation:
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• The very last term, which cannot be decomposed further, is 

by definition 3-particle cumulant

o Cumulant term exists for any number of particles, it is always 

unique, and it isolates the genuine collective contribution

• Introduced in flow analyses by Ollitrault et al

N. Borghini, P. M. Dinh, and J.-Y. Ollitrault, Phys. Rev. C 63, 054906 (2001)

N. Borghini, P. M. Dinh, and J.-Y. Ollitrault, Phys. Rev. C 64, 054901 (2001)



3-particle cumulants in general

• Working recursively from higher to lower orders, we 

eventually have 3-particle cumulant expressed in terms of 

measured 3-, 2-, and 1-particle averages 
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• General result, true for any choice of stochastic observables

• In the same way, cumulants can be expressed in terms of 
measurable averages for any number of observables
o The number of terms grows rapidly with the number of 

observables



Multivariate cumulants in flow analyses: 

The Next Generation
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A. Bilandzic, M. Lesch, C. Mordasini, F. Taghavi, https://arxiv.org/abs/2101.05619

https://arxiv.org/abs/2101.05619


Fundamental properies of cumulants

• We reviewed everything from scratch and supported proofs for:

o Statistical independence

o Reduction

o Semi-invariance

o Homogeneity

o Multilinearity

o Additivity

o …
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For all technical details, see Section II and 

Appendix A in arXiv:2101.05619

• The main strategy in the paper is divided into two steps:

o Confront all existing observables in the field named cumulants with 

these fundamental properties

o For the ones which fail to satisfy them, provide the alternative 

definitions which do satisfy all fundamental properties of cumulants

AB, M. Lesch, C. Mordasini, F. Taghavi, arXiv:2101.05619



Main conclusions

• The main conclusion #1: One cannot perform cumulant 

expansion in one set of stochastic observables, then in the 

resulting expression perform the transformation to some new set 

of observables, and then claim that the cumulant properties are 

preserved in the new set of observables

o After such transformation, the fundamental properties of cumulants 

are lost in general

• The main conclusion #2: The formal properties of cumulants 

are valid only if there are no underlying symmetries due to which 

some terms in the cumulant expansion would vanish identically

o Due to symmetries, 𝑒𝑖𝑛𝜑𝑖 = 0, 𝑒𝑖𝑛(𝜑𝑖+𝜑𝑗) = 0, etc., all vanish

o There are no obvious symmetries for 𝑣𝑘
2 , 𝑣𝑘

2𝑣𝑙
2 , etc., to vanish     
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AB, M. Lesch, C. Mordasini, F. Taghavi, arXiv:2101.05619



Choice of fundamental observable

• Cumulants as used in flow analyses in the last ~20 years:

o Cumulant expansion is performed on azimuthal angles

o Azimuthal correlators which are not isotropic are dropped

o The final result is merely re-expressed in terms of flow degrees 

of freedom 𝑣𝑛 and 𝛹𝑛 via analytic relation
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• Few additional remarks:

o Cumulants of 𝑣𝑛 and 𝑣𝑛
2 are in general different

o 𝑣𝑛 and 𝛹𝑛 have different properties (e.g. with respect to Lorentz 

invariance)  

R. S. Bhalerao, M. Luzum and J.-Y. Ollitrault, Phys. Rev. C 84 034910 (2011)



Cumulants in flow analyses

• Traditionally, azimuthal angles are chosen as fundamental 

observables in the cumulant expansion 

• Based on this approach, one derives e.g. 𝑣𝑛{4} observable

o It gives an estimate for flow harmonic 𝑣𝑛 by using 4-particle 

azimuthal cumulant (not 4-p azimuthal correlator!)

o For large multiplicities, 𝑣𝑛{4} suppresses well nonflow effects

• But this traditional approach yields to very weird and 

inconsistent results when applied to the correlations of 

different flow amplitudes
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Why the traditional cumulant approach with azimuthal angles

which worked so well in the past fails when applied in 

the studies of correlations of different flow amplitudes?



New paradigm in flow analyses

• Example: General 2-particle cumulant

20

o Traditional approach: fundamental observable is an angle 

o New approach: fundamental observable is a flow amplitude  

• Two approaches yield accidentally the same results for 

lower order Symmetric Cumulants SC(k,l), but differ for 

higher orders SC(k,l,m), SC(k,l,m,n), ...  

o Which one is correct? 



Reconciliation (1/2)

• From the fundamental properties of cumulants (statistical 

independence, reduction, semi-invariance, homogeneity, 

multilinearity, additivity, etc.), we have established the 

following two simple necessary conditions: 
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Multivariate observable is a multivariate cumulant only if it satisfies both 

above requirements (arXiv:2101.05619)



Reconciliation (2/2)

• New flow observables (‘the next generation’) which do 

satisfy all formal mathematical properties of cumulants:

o ‘Symmetric and Asymmetric Cumulants’ (genuine 

multiharmonic correlations of flow amplitudes)
 See arXiv:1901.06968 and Sec. V in arXiv:2101.05619

o ‘Cumulants of symmetry plane correlations’
 See Sec. VI in arXiv:2101.05619

o ‘Event-by-event cumulants of azimuthal angles’
 See Sec. IV in arXiv:2101.05619 and arXiv: 2106.05760

 The main topic of today’s talk
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Example #1: Higher-order SC

• New paradigm:

1/ Cumulant expansion directly on flow amplitudes 𝑣2:
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2/ Azimuthal angles are used merely to build an estimator for the 

above observable:



𝐒𝐂(𝒌, 𝒍,𝒎) in ALICE

• Run 1 (2010) Pb–Pb collisions at 𝑠NN = 2.76 TeV
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Comparison with the state-of-the-art models: Development of genuine 

multiharmonic correlations during hydrodynamic evolution

ALICE Collaboration, arXiv 2101.02579



Example #2: Asymmetric Cumulants (AC)

• Generalization of Symmetric Cumulants

• Fundamental observable is 𝑣2

o Choice driven by experiment: The simplest flow moment which can be 

estimated experimentally with azimuthal correlations 

o All terms are preserved in the cumulant expansion 
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Event-by-event cumulants of azimuthal 

angles

26

A. Bilandzic, arXiv:2106.05760, prepared for ‘Offshell-2021’



Main idea

• Traditionally, cumulants of azimuthal angles are defined in 

terms of all-event averages:
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o Due to underlying symmetries, all terms which are not isotropic, are 

averaged out to 0 => fundamental properties of cumulants are lost

• New approach: cumulants of azimuthal angles are defined 

in terms of single-event averages: 

o ‘Event-by-event cumulants of azimuthal angles’
o Despite underlying symmetries, all terms in the expansion are kept
o Interpretation and meaning of cumulants is completely different



Role of symmetries

• Cumulant is identically 0 if one of the variables in it is statistically 
independent of the others
o This holds true over the whole phase space

• Reflection symmetry
o Cumulant can be accidentally 0 due to symmetry f(x,y) = f(x,-y) but in 

this case they are never 0 over the whole phase space  

• Permutation symmetry
o Marginal distributions of different variables are the same

• Frame independence

• Relabelling
o Azimuthal correlators of different variables are estimated from exactly 

the same sample => properties of cumulants are lost

28

Sec. II in arXiv:2106.05760



Event-by-event cumulants of azimuthal angles

• Toy Monte Carlo study: Azimuthal angles are sampled pair-wise 

=> only 2-particle correlations are present
o New 2-particle cumulants correctly recover the theoretical input

o New 4- and 6-particle cumulants are identically 0
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• Works only if we have full handle over combinatorial background

Sec. IV in arXiv:2101.05619



Role of combinatorial background

• The origin of the problem: The dataset is randomized

o Particles emitted in the same process: ‘signal’

o Particles taken from different processes: ‘background’

• In most analyses in high-energy physics, ‘signal’ and 

‘background’ are separated by using mixed-event technique

o Not applicable for azimuthal angles, due to random event-by-

event fluctuations of impact parameter vector

• Can we instead analytically solve the problem of 

combinatorial backround?
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Statistical independence

• If two random observables, x and y, are statistically 

independent, then their joined 2-particle probability density 

function (p.d.f.) fully factorizes into marginal p.d.f.’s: 
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• In general, 𝑓𝑥(x) and 𝑓𝑦(y) are two different p.d.f.’s

• Two marginal p.d.f.’s are defined as:



Two-particle correlations

• If particles are emitted from p.d.f. f(x,y), and if the resulting 

sample is randomized, what is the p.d.f. w(x,y) which 

describes the final randomized sample?

• The most general result:
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• Universal combinatorial weights: pA, pB, pC

• Marginal p.d.f.’s: fx(x), fy(y)



Combinatorial weights (2-particle)

• Universal and depend only on multiplicity:
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Toy Monte Carlo (2-particle)

• Quantitative description of 2-particle azimuthal correlation in 
the randomized sample

34Sec. IIIB in arXiv:2106.05760



Three-particle correlations

• If particles are emitted from p.d.f. f(x,y,z), and if the resulting 

sample is randomized, what is the p.d.f. w(x,y,z) which 

describes the final randomized sample?

• The most general result:
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• Universal combinatorial weights: pA,  pB1,  pB2,  pC1, pC2, pC3

• Marginal p.d.f.’s: fx(x), fy(y), fz(z), fxy(x,y), fxz(x,z), fyz(y,z)



Combinatorial weights (3-particle)

• Universal and depend only on multiplicity:
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Toy Monte Carlo (3-particle)

• Quantitative description of 3-particle azimuthal correlation in 
the randomized sample

37Sec. IIIC in arXiv:2106.05760



Thanks!
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Backup slides
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The ‘flow principle’

• Correlations among all produced particles are induced 

solely by correlation of each single particle to the collision 

geometry
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• Analogy with the falling bodies in gravitational field (rhs)

• Whether or not particle are emitted simultaneously, or 

one by one, trajectories are the same

o These are statistically independent trajectories 



Example: 2-particle cumulants

• How to use this new recipe in practice?

41
AB, M. Lesch, C. Mordasini, F. Taghavi, arXiv:2101.05619

• Reminder: General 2-particle cumulant

• Despite its simplicity, most of observables named cumulants in the field 

fail to satisfy this new recipe. What are the alternatives?



Example Monte Carlo study

• Measurements of new AC observables is feasible, and they will provide 

further new and independent constraints on initial conditions and QGP 

properties 
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AB, M. Lesch, C. Mordasini, F. Taghavi, Section VI in arXiv:2101.05619



Hydro flow in-plane

• Non-trivial effect which is sensitive to transport coefficients 

of QGP (e.g. its  shear viscosity)
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If anisotropic flow has developed, neighboring layers are moving at different 

relative velocities, parallel displacement is opposed by shear viscosity

large anisotropic flow  small shear viscosity



Statistical independence, back to flow

• If anisotropic flow is the only source of correlations between 

produced particles, their joint n-variate p.d.f.
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factorizes into product of n single-particle marginal p.d.f.'s:

• From ‘flow principle’: All marginal p.d.f.’s are the same, and 

therefore parameterized by the same Fourier series:


