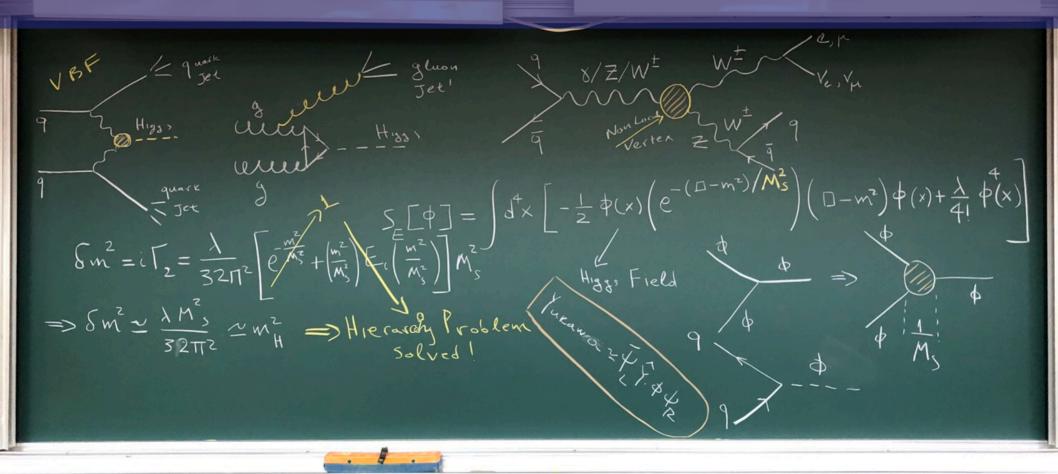
High P_T Higgs excess as a signal of non-local QFT at the LHC



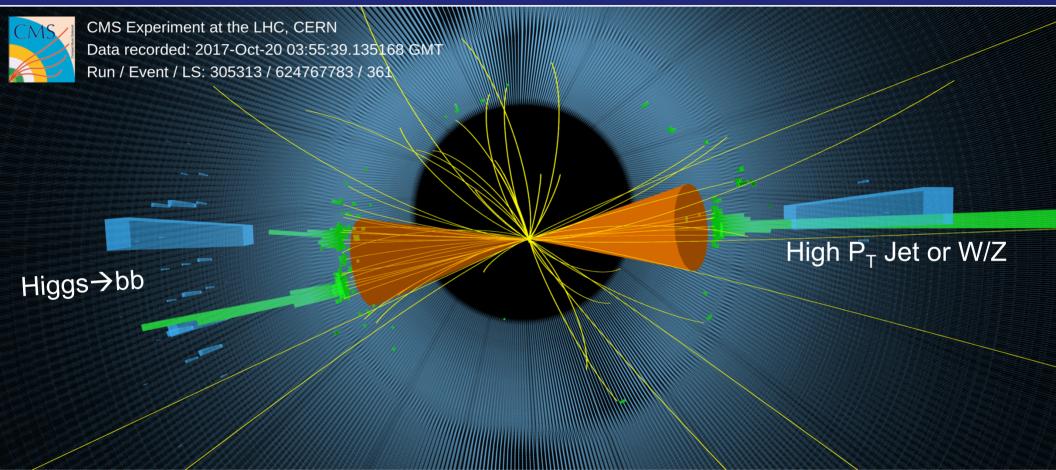
S. Paganis, X.F. Su, H.Y. Wu, Y.Y. Li, Min Chen (NTU), R. Nicolaidou (CEA)

Offshell-2021, 6-9 July 2021

Introduction

- Phenomenological aspects of a "non-local" SM extension are studied.
- Non-locality is introduced by inserting infinite-term polynomials of derivatives in the Lagrangian kinetic or interaction terms
 - Inspired by String Field Theory (late 60's!)
 - Equivalent to introducing exponential form factors in SM vertices.
 - NL theory is UV finite with no new DOFs or ghosts.
- In this type of extensions the presence of Regge-like trajectories/poles are strongly motivated.
 - J=1 meson poles correspond to W' and Z', close to the NL scale.
 - Lineshapes and cross sections modified by the form factors.
- Heavy Vectors give anomalous high-Pt Higgs yields.
- In this work, we explore the NL-SM discovery potential in LHC.

Boosted Higgs: gateway to New Physics?

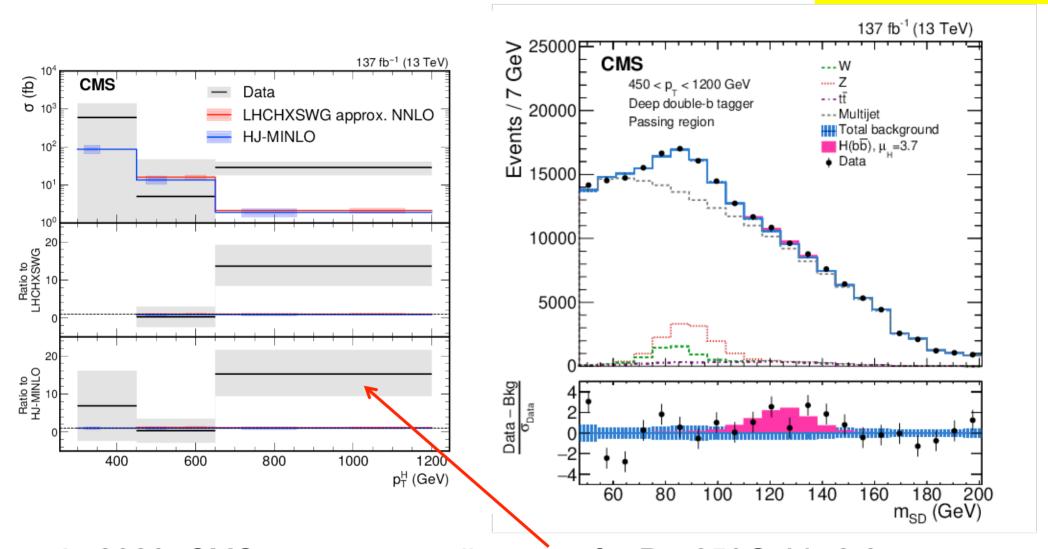


Spectacular events events with Higgs decaying into two small angle objects (bb here) and recoiling against a hadronic object (or even lepton, dilepton).

3

CMS High P_T H→bb (137 fb⁻¹)

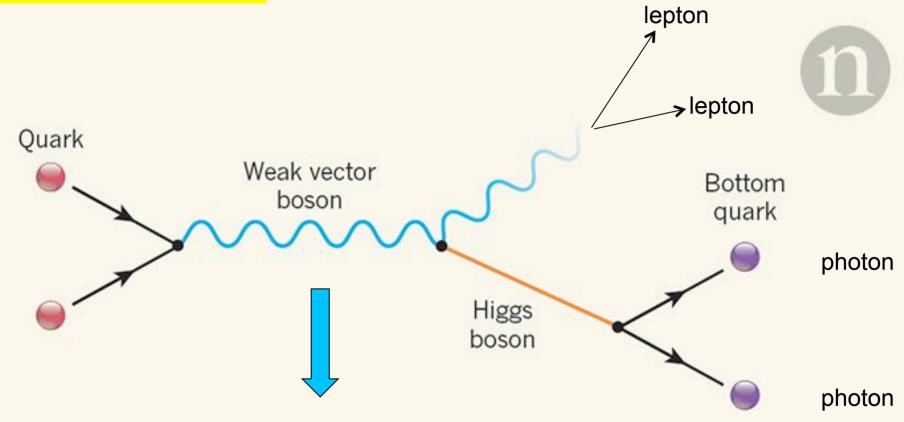
JHEP 12 (2020) 085



In 2020, CMS reports a small excess for P_T >650GeV: 2.6 σ (Excess not seen in the $Z\rightarrow$ bb).

Anomalous boosted H production?

Nature NEWS AND VIEWS 19 Nov 2018



Heavy Exotic Vector(s):

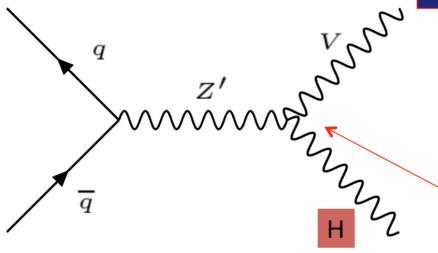
- Predicted by many BSM models
- In composite theories naturally expected as poles in Regge trajectories (J=1 poles), but may not be narrow!

onature

Problem: a visible Higgs excess would require larger cross sections from currently assumed generic models (like HVT, used by ATLAS/CMS)

A bit of history: VV/VH dominance

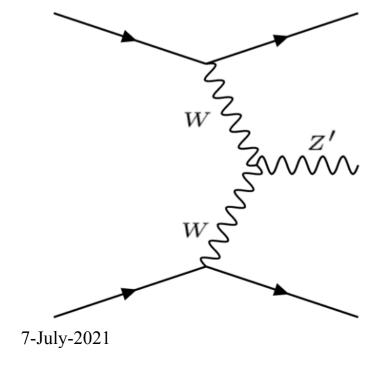
Hoffmann, Kaminska, Nicolaidou, SP, EPJC74 (2014) 3181



Drell-Yan production (dominant)

Larger gV coupling? Form Factor.

NP effects studied in: **JHEP 1803 (2018) 159**



Vector Boson Fusion (VBF)

Li, Nicolaidou, SP, EPJC, arXiv:1904.03995 (2019)

(used VH/VZ \rightarrow V+bb)

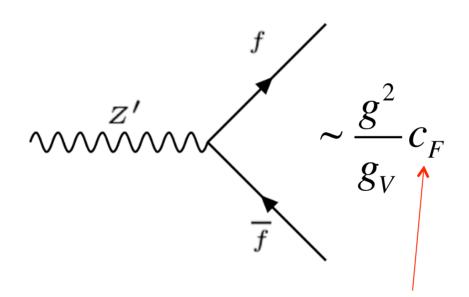
A model for BSM spin-1 resonances

HVT Model

Coupling of resonance to SM fermions through mixing with the Eweak bosons.

 D. Pappadopoulo, A. Thamm, R. Torre and A. Wulzer, Heavy Vector Triplets: Bridging Theory and Data, JHEP 09 (2014) 060.

Coupling of resonance to weak boson through effective coupling gV.

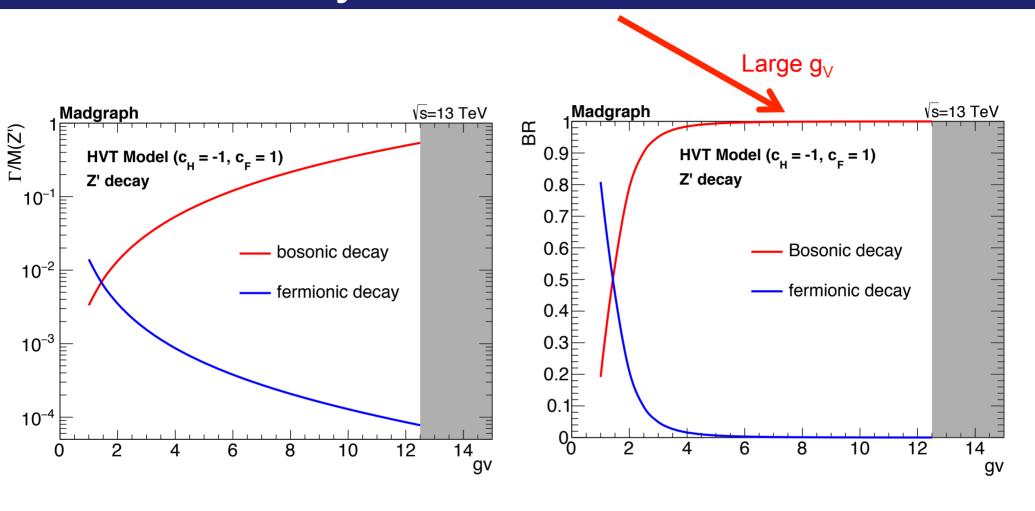


 $\sum_{X'}^{X'} \sim g_V c_H$

Additional weight to the coupling to add flexibility

Additional weight to the coupling to add flexibility

V' decays to VV, VH dominant



For large g_V the BR to fermions goes to 0.

Large g_V also means larger width (>5%). Only close to NP regime width very large.

Can we increase HVT xsections?

- Non-local modification of the SM, may affect couplings: cross sections modified
- Several SM extensions fall in this effective description.
- The new Physics scale $\Lambda_{\rm NL}$ should be at a few TeV.

Smearing a delta function using exp(p²) gives a Gaussian: smearing of a point.

$$e^{\alpha^2 \partial_x^2} \delta(x) = e^{\frac{\partial_x^2}{\Lambda^2}} \delta(x) = \frac{1}{\alpha \sqrt{2}} e^{-\frac{x^2}{4\alpha^2}}$$

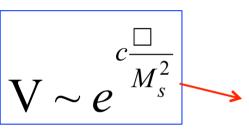
Smearing effects become important at scale Λ ~1/ α

The coefficient α has dimension of 1/P²: this is the non-locality scale squared

String Field Theory

Non-locality enters through infinite derivatives which give form factors.

Infinite derivative operators well known in String Theory:



Amplitudes proportional to $exp(c\alpha'\Box)$

String Tension (used in ST vertices) Scale of non-locality

$$a' = \frac{1}{M_s^2}$$

Universal Regge Slope (back in the 60's!)

Reminder: Regge trajectory

EPJ A 48, 127 (2012)

$$a'E_N^2 = N\hbar$$

For QCD strings
$$a' = (10^{-15} \text{ m})^2$$
 for superstrings $a' = (10^{-33} \text{ m})^2$

The non-local QFT prescription

PRD 101 (2020) 8, 084019

Start with a real scalar $\phi(x)$ and write down the action:

$$S = \frac{1}{2} \int d^4x d^4y \phi(x) \mathcal{K}(x-y) \phi(y) - \int d^4x V(\phi(x)),$$
 Operator that makes explicit the non-local dependence.

$$\begin{split} S_{\scriptscriptstyle K} &= \quad \frac{1}{2} \int d^4x d^4y \phi(x) \mathcal{K}(x-y) \phi(y) \qquad \text{Fourier Transform} \\ &= \quad \frac{1}{2} \int d^4x d^4y \phi(x) \int \frac{d^4k}{(2\pi)^4} F(-k^2) e^{ik\cdot(x-y)} \phi(y) \\ &= \quad \frac{1}{2} \int d^4x d^4y \phi(x) F(\square) \int \frac{d^4k}{(2\pi)^4} e^{ik\cdot(x-y)} \phi(y) \qquad \qquad \int \frac{d^4k}{(2\pi)^4} e^{ik\cdot(x-y)} = \delta^{(4)}(x-y) \\ &= \quad \frac{1}{2} \int d^4x \phi(x) F(\square) \phi(x), \qquad \qquad \text{Use the the integral representation of the Dirac } \delta \end{split}$$

$$\mathcal{K}(x-y) = F(\square)\delta^{(4)}(x-y).$$

Strictly speaking it should be dimensionless: $\frac{\perp}{\Lambda}$

Choice of $F(\square)$

PRD 101 (2020) 8, 084019

$$F(\Box) = e^{-f(\Box)} \prod_{i=1}^{N} (\Box - m_i^2),$$
 Its inverse is the propagator
$$\Pi(k) = e^{f(-k^2)} \prod_{i=1}^{N} \frac{-i}{k^2 + m_i^2}.$$

If we require $F(\Box)$ to be an *entire analytic function*. We use the Weierstrass factorization theorem.

2N is the number of poles in the propagator

For N>1 there are ghost DOF. So, selecting N=1.

$$F(\square) = e^{\frac{(-\square + m^2)^n}{M_s^{2n}}} (\square - m^2),$$

Polynomial functions of \Box is std choice for $f(\Box)$

Non-Locality is in the Interaction!

$$\tilde{\phi}(x) = e^{-\frac{1}{2}f(\square)}\phi(x) = \int d^4y \mathcal{F}(x-y)\phi(y),$$

After a field redefinition ...

where $\mathcal{F}(x-y) := e^{-\frac{1}{2}f(\square)}\delta^{(4)}(x-y)$

$$S = \frac{1}{2} \int d^4x \tilde{\phi}(x) (\Box - m^2) \tilde{\phi}(x) - \int d^4x V \left(e^{\frac{1}{2} f(\Box)} \tilde{\phi}(x) \right)$$
 The NL operator appears in the interaction term

$$e^{-f(\Box)}(\Box-m^2)\phi(x)=\dfrac{\partial V(\phi)}{\partial \phi(x)},$$
 Field Equations have a new term: the NL operator.

for a delta source: $\delta^{(4)}(x-y) = \delta(x^0 - y^0)\delta^{(3)}(\vec{x} - \vec{y})$

$$e^{-f(\Box_x)}(\Box_x - m^2)\Pi(x - y) = i\delta^{(4)}(x - y)$$

The solution is:

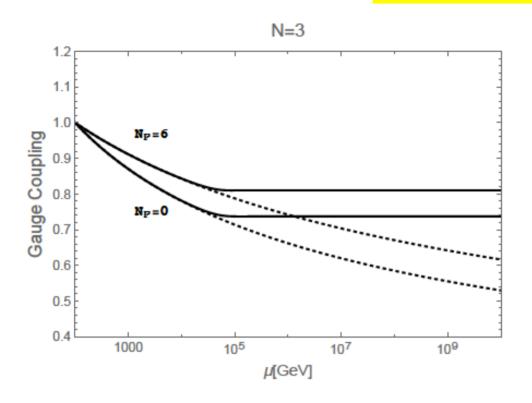
$$\Pi(x-y) = \int \frac{d^4k}{(2\pi)^4} \frac{-ie^{f(-k^2)}}{k^2 + m^2 - i\epsilon} e^{ik\cdot(x-y)}$$
 Or in momentum space:

$$\Pi(k) = -\frac{ie^{f(-k^2)}}{k^2 + m^2 - i\epsilon}$$

Usual propagator now carries the NL operator

NL non-abelian gauge theories

Goshal, Mazumdar, Okada, Villalba, arXiv:2010.15919, 2020



Theory is not scale invariant at the IR, but it becomes invariant at the UV, beyond the non-locality scale.

In the Higgs sector, the Hierarchy problem is ameliorated.

No ghosts and and no new degrees of freedom.

Figure 1. The SU(3) gauge coupling running with $N_F = 6 \& N_F = 0$, shown in solid (dashed) black lines for the non-local (local) theories. Here, we have set $M = 10^5$ GeV.

One may ask: does this mean the spacetime is discrete?

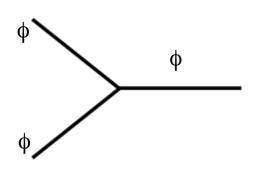
Discrete or not discrete spacetime?

We can think of non-locality in different ways:

- i. Discretization of spacetime: a minimal length scale exists (usually Planck~1/M_p)
- ii. Related to interactions in **continuous spacetime**: free theory is unaffected by non-locality. Switching on interactions at some scale Λ_{NP} non-locality is then associated with this scale.

Here we use (ii) and introduce the non-locality via form factors applied on kinetic operators or equivalently interaction terms in the Lagrangian.

Non-Local SM



Local vertex

Biswas, Okada: NPB 898 (2015) 113-131

Buoninfante et.al. PRD 101 (2020) 8, 084019

At ranges R < 1/M

Vertex is smeared by infinite derivative operator

Nonlocal vertex

$$S_{\rm E}[\phi] = \int d^4x \left(-\frac{1}{2} \phi(x) e^{-(\Box - m^2)/M_s^2} (\Box - m^2) \phi(x) + \frac{\lambda}{4!} \phi^4(x) \right)$$

$$\delta m^2 = i\Gamma_2 = \frac{\lambda}{32\pi^2} \left[e^{-\frac{m^2}{M^2}} + \left(\frac{m^2}{M^2}\right) En\left(-\frac{m^2}{M^2}\right) \right] M^2$$

Hierarchy problems are reduced

- For k²<<M² vertices look point-like → SM effective theory.
- For k²>M² couplings scale → theory is conformal.
- No problems with vacuum stability.
- Theory is UV finite.

Non-locality at the SM (TeV) scales?

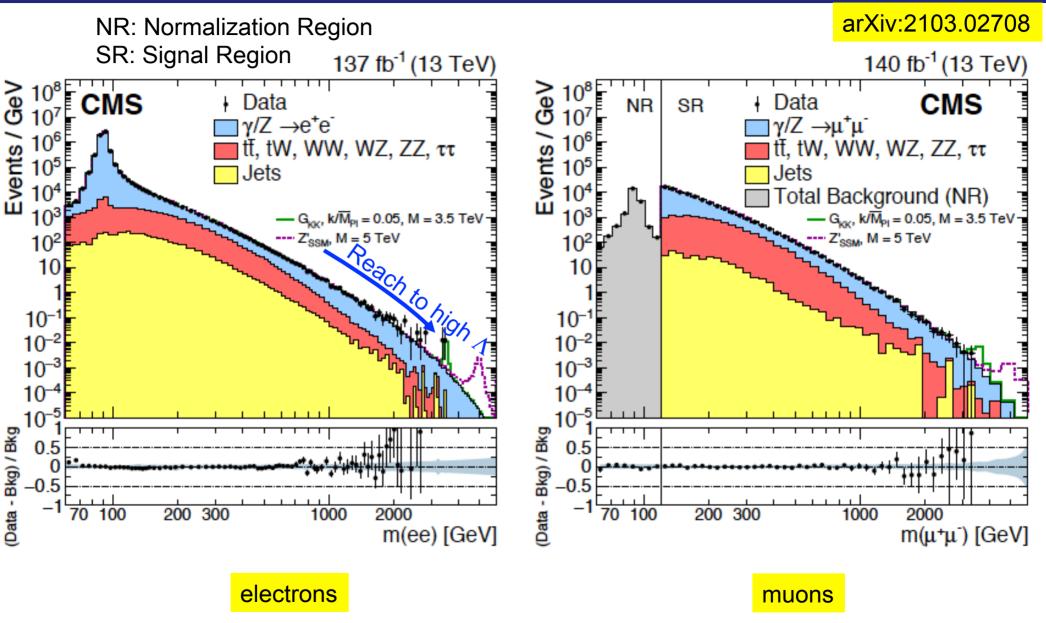
Similarity to string potential, Veneziano amplitude $\sigma_{NL-SM} = e^{a\frac{S}{\Lambda_{NL}^2}} \times \sigma_{SM}$

 $s = q^2$: momentum transfer square

We need LHC observables that have s $\sim \Lambda^2 \sim$ multi-TeV

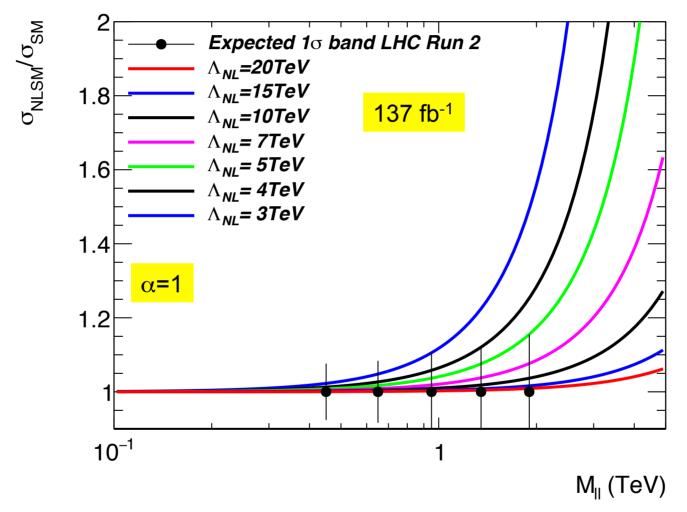
17

High mass DY: affected by NL



High mass DY: constrain the Λ_{NL}

Use the CMS published 1- σ uncertainties to get an idea of the expected limits. We leave the extracted (observed) limits to the experiments.



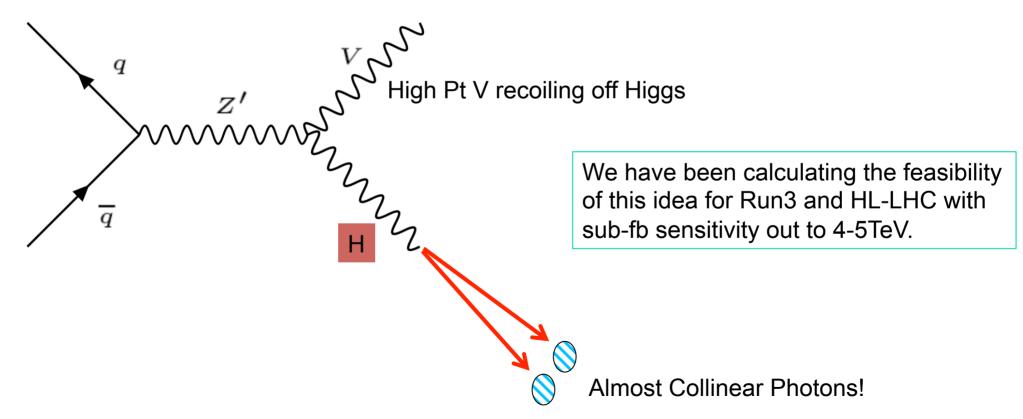
In this work we consider only α >0 (positive deviations). A few TeV limit can already be set by DY!

Non-Local QFT at the LHC

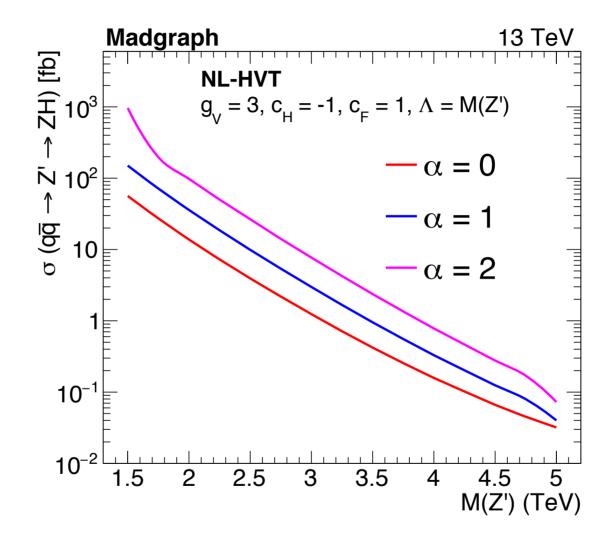
NL effects can lead to diboson excess (only in the s-channel production)

We want to look in a region of phase space with very small background.

Look for VH $\rightarrow \gamma \gamma$ events with "collinear" photons. (V \rightarrow leptonic for now)

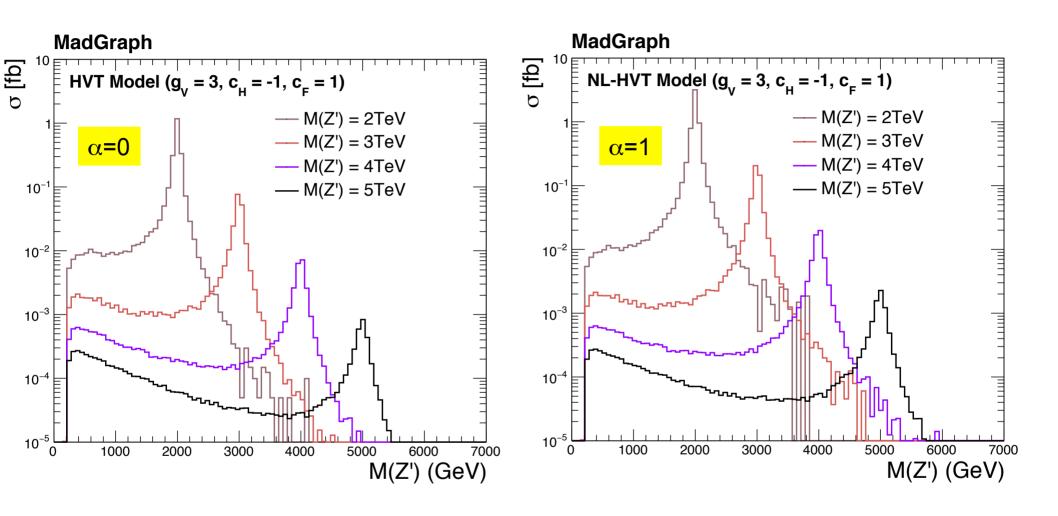


$pp \rightarrow Z'$ cross section at 13TeV



The above is LO calculation \rightarrow No narrow VH, VV (HVT) resonances seen at LHC. For α >0 not only cross sections but also lineshapes are modified (see next).

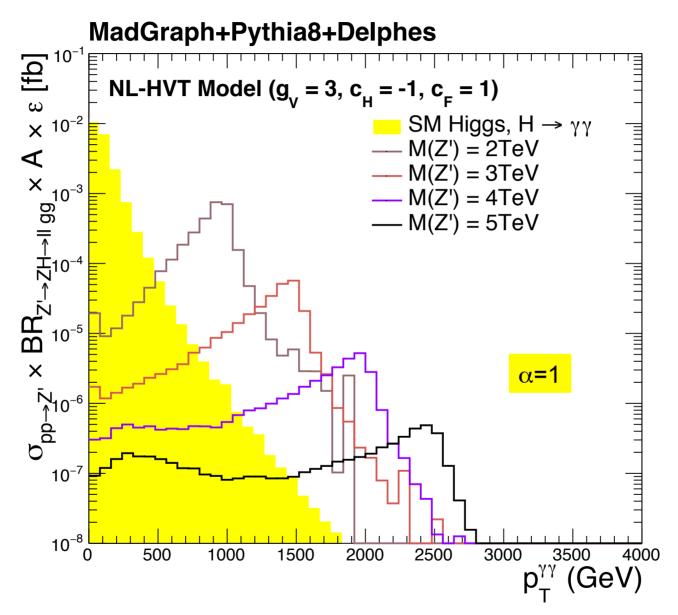
Z' xsection: non-local modifications



Non-locality effects can lead to significant increases in the cross section

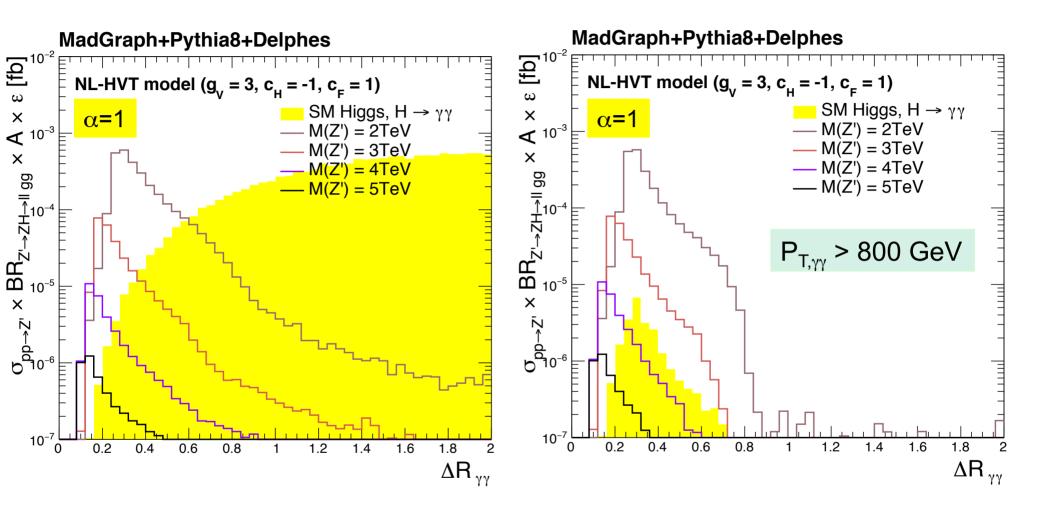
7-July-2021

Higgs yields vs diphoton P_T



The non-local signal is significantly boosted wrt the SM Higgs (mostly VH)

Higgs yields vs diphoton ΔR



Effect of a cut on the diphoton Pt > 800 GeV

7-July-2021

Anomalous Higgs yields

Process	$\sigma \times BR$	$A \times \epsilon$	Yield $(P_T^{\gamma\gamma} > M_{V'}/3)$		
$qq \rightarrow V' \rightarrow \gamma \gamma$	[fb]	[%]	[fb]	$M_{V'}$ [TeV]	
$Z' \to ZH \to \ell\ell\gamma\gamma \ (2 \text{ TeV})$	1.90×10^{-3}	40.8	6.8×10^{-4}	2	
$Z' \to ZH \to \ell\ell\gamma\gamma$ (3 TeV)	1.97×10^{-4}	34.4	5.3×10^{-5}	3←	
$Z' \to ZH \to \ell\ell\gamma\gamma$ (4 TeV)	2.99×10^{-5}	29.9	5.1×10^{-6}	4	
$Z' \to ZH \to \ell\ell\gamma\gamma$ (5 TeV)	6.36×10^{-6}	29.4	3.8×10^{-7}	5	_
$W' \to WH \to \ell\nu\gamma\gamma$ (2 TeV)	1.26×10^{-2}	54.1	6.0×10^{-3}	Order of	†
$W' \to WH \to \ell\nu\gamma\gamma$ (3 TeV)	1.33×10^{-3}	46.7	4.8×10^{-4}	3 magnitu	de
$W' \to WH \to \ell\nu\gamma\gamma$ (4 TeV)	1.99×10^{-4}	42.3	4.8×10^{-5}	4	
$W' \to WH \to \ell\nu\gamma\gamma$ (5 TeV)	4.20×10^{-5}	43.8	5.4×10^{-6}	5	
$SM ZH \rightarrow \ell\ell\gamma\gamma$	0.20	13.3	3.8×10^{-5}	2	
$SM ZH \rightarrow \ell\ell\gamma\gamma$	0.20	13.3	3.4×10^{-6}	3	
$SM ZH \rightarrow \ell\ell\gamma\gamma$	0.20	13.3	5.1×10^{-7}	4	
$SM ZH \rightarrow \ell\ell\gamma\gamma$	0.20	13.3	7.0×10^{-8}	5	
$SM WH \rightarrow \ell \nu \gamma \gamma$	1.01	35.2	2.7×10^{-4}	2	
$SM WH \rightarrow \ell\nu\gamma\gamma$	1.01	35.2	2.5×10^{-5}	3	
$SM WH \rightarrow \ell \nu \gamma \gamma$	1.01	35.2	3.3×10^{-6}	4	
SM $WH \to \ell\nu\gamma\gamma$	1.01	35.2	3.7×10^{-7}	5	
SM Continuum $\ell\ell\gamma\gamma$	638.2	0.21	2.7×10^{-4}	2	
SM Continuum $\ell\ell\gamma\gamma$	638.2	0.21	1.6×10^{-5}	3	
SM Continuum $\ell\ell\gamma\gamma$	638.2	0.21	2.8×10^{-6}	4	
SM Continuum $\ell\ell\gamma\gamma$	638.2	0.21	5.6×10^{-8}	5	
SM Continuum $\ell\nu\gamma\gamma$	654.4	2.9	5.2×10^{-4}	2	
SM Continuum $\ell\nu\gamma\gamma$	654.4	2.9	4.1×10^{-5}	3	
SM Continuum $\ell\nu\gamma\gamma$	654.4	2.9	3.4×10^{-6}	4	
SM Continuum $\ell\nu\gamma\gamma$	654.4	2.9	1.6×10^{-7}	5	

VH→γγ 95% CL contours vs Luminosity



In LHC Phase 2 the sensitivity to non-local effects reaches the scale of ~5 TeV.

Summary

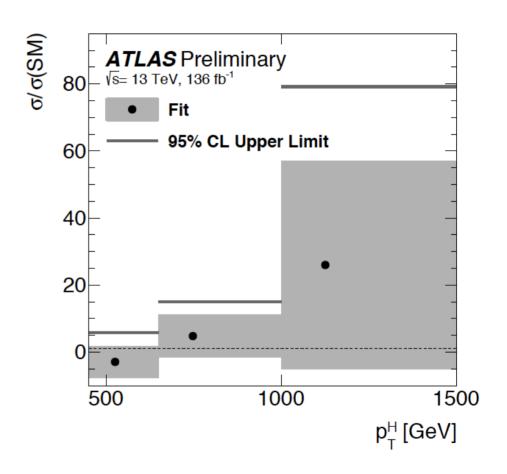
- A "non-local" SM extension was presented and its potential signals were discussed.
- Non-Locality is implemented through form factors smearing interaction vertices.
 - This is the effective description of many BSM models.
- DY measurements can put constraints in NL scales.
- Hypothetical new heavy states or continuum associated with the BSM physics can lead to anomalous boosted Higgs production.
- Analyses optimized for boosted Higgs can be ideal for early signs of new physics.

Extra Slides

ATLAS High P_T H → bb (136 fb⁻¹)

ATLAS-CONF-2021-010

nH [CaV]	μ_H			
p_{T}^{H} [GeV]	Exp.	Obs.		
300–450	1 ± 18	-7 ± 17		
450-650	1.0 ± 3.3	-2.9 ± 4.7		
>650	1.0 ± 6.3	4.8 ± 6.4		



Large uncertainties in ATLAS results. Need more luminosity.

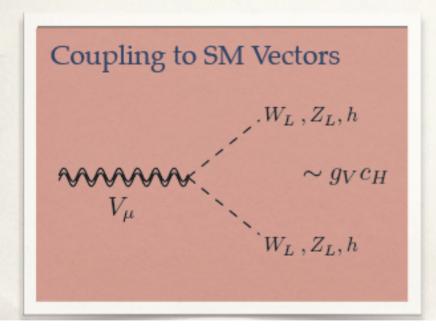
Heavy Vector Triplet simplified model

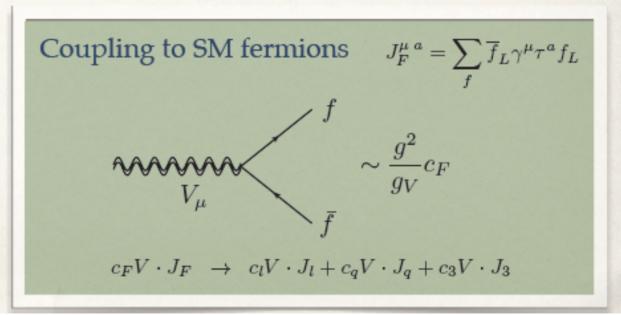
Pappadopulo et al

$$\mathcal{L}_{V} = -\frac{1}{4}D_{[\mu}V_{\nu]}^{a}D^{[\mu}V^{\nu]}{}^{a} + \frac{m_{V}^{2}}{2}V_{\mu}^{a}V^{\mu}{}^{a} \qquad V = (V^{+}, V^{-}, V^{0})$$

$$+ ig_{V}c_{H}V_{\mu}^{a}H^{\dagger}\tau^{a}\overset{\leftrightarrow}{D}^{\mu}H + \frac{g^{2}}{g_{V}}c_{F}V_{\mu}^{a}J_{F}^{\mu}{}^{a}$$

$$+ \frac{g_{V}}{2}c_{VVV}\epsilon_{abc}V_{\mu}^{a}V_{\nu}^{b}D^{[\mu}V^{\nu]}{}^{c} + g_{V}^{2}c_{VVHH}V_{\mu}^{a}V^{\mu}{}^{a}H^{\dagger}H - \frac{g}{2}c_{VVW}\epsilon_{abc}W^{\mu\nu}{}^{a}V_{\mu}^{b}V_{\nu}^{c}$$



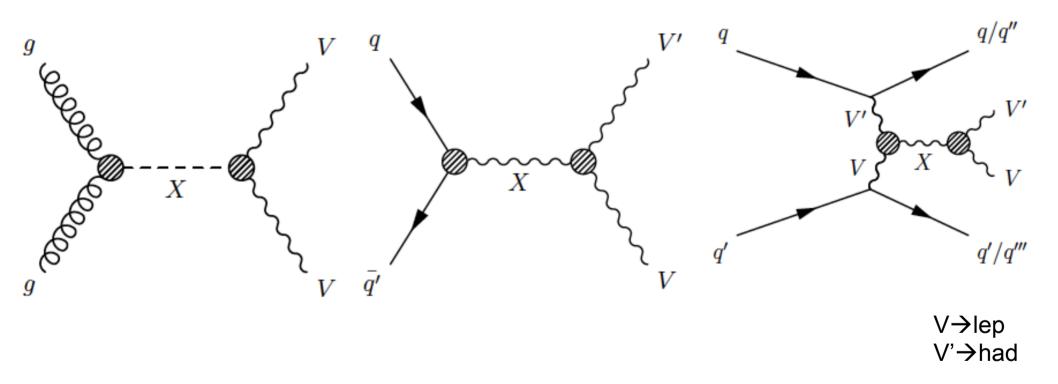


Put this is in Madgraph5 (LO) and send it through detectors

X->VV search in ATLAS

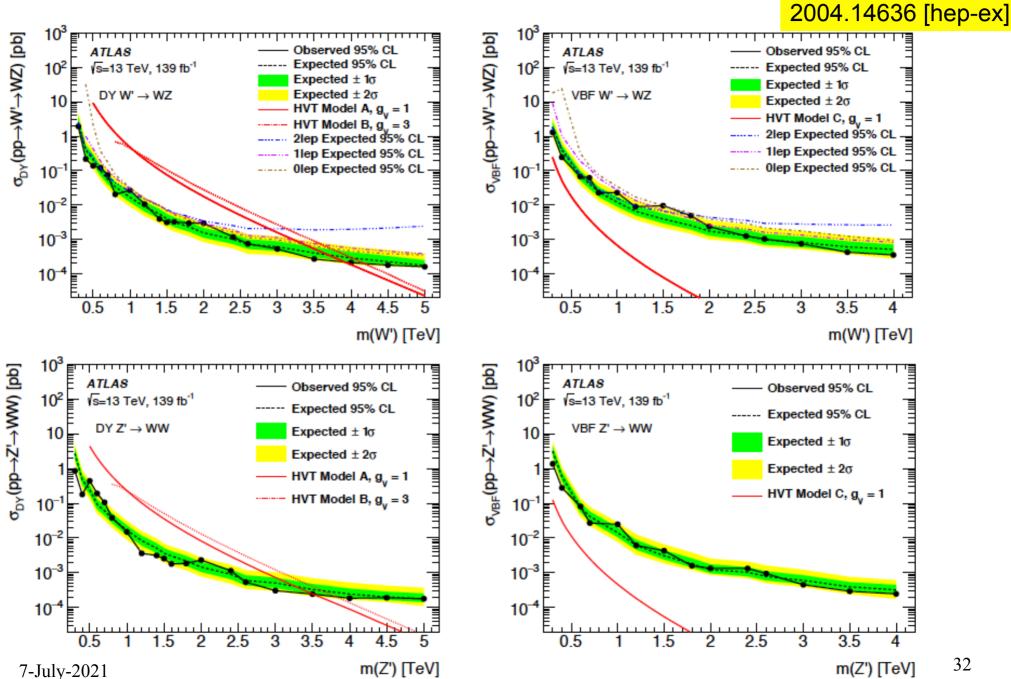
2004.14636 [hep-ex]

Full LHC Lumi: 139/fb

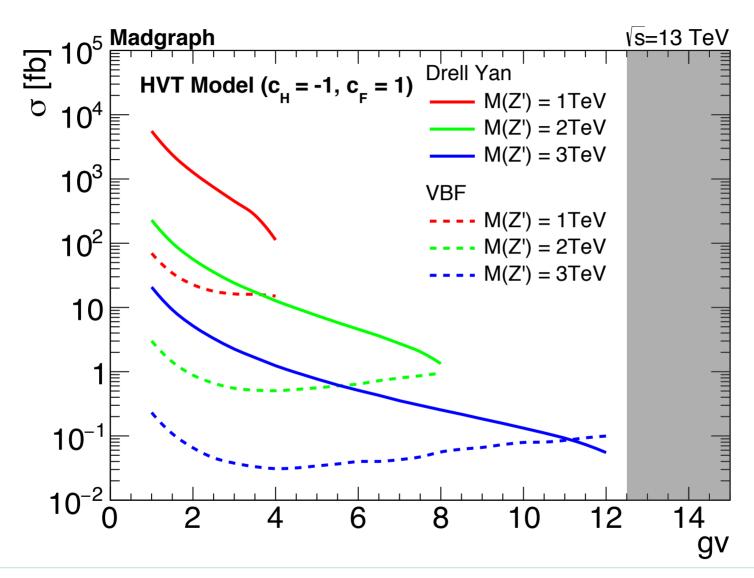


Again, in many BSM scenarios states X are predicted to preserve Unitarity. Caution: they don't have to be a single state nor narrow states!

X->VV search in ATLAS



pp→Z' xsection at 13TeV



The above is LO calculation → No narrow VH, VV (HVT) resonances seen at LHC Are there extra BSM contributions that can change the xsections & lineshapes?