An Experiment for Electron-Hadron Scattering at the LHC

D. Britzger and Y. Yamazaki for

- K. D. J. André^{1,2}, L. Aperio Bella³, N. Armesto^{a,4}, S. A. Bogacz⁵,
- D. Britzger⁶, O. S. Brüning¹, M. D'Onofrio², E. G. Ferreiro⁴, O. Fischer²,
- C. Gwenlan⁷, B. J. Holzer¹, M. Klein², U. Klein², F. Kocak⁸, P. Kostka²,
- M. Kumar⁹, B. Mellado^{9,10}, J. G. Milhano^{11,12}, P. R. Newman¹³,
- K. Piotrzkowski¹⁴, A. Polini¹⁵, X. Ruan⁹, S. Russenschuk¹,
- C. Schwanenberger³, Y. Yamazaki¹⁶

Off-shell conference, 07.07.2021

Proposal for the 2030s – LHeC

LHeC – ep data in 2030s

- ERL electron ring attached to HL-LHC
- Similar concept than FCC-eh but realisable much earlier
- $E_e = 50 \text{ GeV}, L \sim 10^{34} \text{cm}^{-2} \text{s}^{-1}$

LHeC

- √s ~ 1.3 TeV
- Electron and positron data
- Up to 1 ab-1 integrated luminosity
- Detector may possibly be shared with ALICE3/HI ((talk by F. Carnesecchi))

Relocatable

 electron-accelerator components can be relocated from HL-LHC to FCC-hh

Kinematic plane

LHeC

- Rich physics program at all scales
 - Higgs physics in NC and CC DIS
 - Top quark production
 - BSM physics and searches
 - Precision QCD
 Proton structure, substructure, strong coupling constant, jet physics, heavy quarks, ...
 - Electroweak physics
 - Heavy ion programme

•

Low and high luminosity, low and high-scale physics

→ Intense electron beam from ERL

Accelerator concept

Energy-recovery linac – a green technology?

Energy-recovery linacs (ERL)

- Well-proven accelerator concept
- Many facilites exist world-wide

A new facility comprising all essential features?

- high-current & high-energy & multi-pass
- optimised cavities & cryo-modules
- and a beam for collider experiments

PERLE at Orsay

- ERL demonstrator facility for LHeC needs
- 20mA, 802 MHz SRF, 3 turns → operation 2025+

EPPSU 2020 strategy

Innovative accelerator technology underpins the physics reach of high-energy and high-intensity colliders. [...] The technologies under consideration include [...] energy recovery linacs

Accelerator Considerations

ERL geometry

- Two SC linac accelerators
- three-pass return arcs

ERL main parameters

Parameter	\mathbf{Unit}	Value
Beam energy	${ m GeV}$	50
Bunch charge	m pC	499
Bunch spacing	ns	24.95
Electron current	mA	20
trans. norm. emittance	$\mu\mathrm{m}$	30
RF frequency	MHz	801.58
Acceleration gradient	MV/m	20.06
Total length	m	6665

Q-parameter of 5-cell prototype

Beam optics & Front-to-End Tracking studies

Electron beam optics

- multi-turn acceleration to 50 GeV
- Sequence of linacs and arcs yield strong focussing and large vertical β-function in the mini beta quadrupoles
- Other peaks between linacs and arcs

Front-to-end Tracking

- Emittance growth during the three turn acceleration
- Good agreement between anlytic result and simulation
- Excellent beam transmission and energy recovery efficiency is achieved, including synchrotron radiation and beam-beam disruption.

ERL size	$1/3 C_{LHC}$	$1/4 C_{LHC}$	$1/5 C_{LHC}$
$\gamma \varepsilon_x^{\mathrm{inj}} \; [\mu \mathrm{m} \mathrm{rad}]$	25.4	22.7	15.1
$\Delta p/p$ at IP	0.021~%	0.029~%	0.041~%
transmission	99.93~%	98.89 %	98.40 %
energy recovery	97.9 %	96.7 %	95.4~%

Fig. 22 Representation of the beta functions and the beam energy along the multi-turn ERL operation.

Fig. 23 Emittance growth along the curvilinear coordinate for the largest ERL design, corresponding to 1/3 of the LHC circumference.

Concurrent eh & hh Operation

Two HL-LHC operation modes

- *hh* collisions at IP1,2,5,8 no e beam
- eh collisions at IP2 and hh at IP1,5,8
 - → non-colliding *p*-beam: symmetric orbit bump & vert. crossing

Three beam interaction region

LHC proton beam optics

Schematic view of the three beams at IP2

At IP2: same vertex for all interaction types (ep, eA, pp, AA) \rightarrow optional hh running with LHeC-detector.

Interaction region design

Schematic view of focusing & beam separation scheme

- First SC proton quadrupole (QA1)
 - → needs to re-match the proton optics
 - → field-free region for electron beam

Q0D

optical functions of the electron beam

Same beam sizes at IP

 $\beta_x(p) = \beta_x(e)$ $\beta_y(p) = \beta_y(e)$

Half quadrupole Q0 magnet design

QA1

and electron beam enveloppes

QA0

Physics

Deep-inelastic electron-proton scattering

Deep-inelastic electron-proton scattering mediated in spacelike regime, by γ , γ Z, Z or W-boson exchange

Direct probe the structure of the proton \rightarrow bound together by QCD dynamics \rightarrow Very rich physics in 'hadronic final state' $X \dots$

Higgs physics

DIS Higgs Production Cross Section

- Higgs-production cross section ~ 200pb
- Sensitivity to six decay channels bb, WW, gg, ττ, cc, ZZ (see also talk by M. Schott)

Higgs in CC and NC DIS

Proton structure measurements

Color-neutral particle probes the interior of the proton

- Parton distribution functions (PDFs) of the proton with unprecedented precision
- Full determination of all flavors

Precision Standard Model physics

Electroweak sector

- Precision EW physics through inclusive DIS measurements (high-Q²)
- EW physics in t-channel
 - → Unique probe of scale-dependence
 - → EW physics with charged currents

Strong sector

- All aspects of QCD with highest precision: Jet physics, heavy flavors (charm, beauty), fragmentation, hadronisation, etc...
- Strong coupling: ±0.00016 (0.15%)

'Running' of fundamental SM couplings → Test of SM-gauge structure and sensitivity to BSM

Top Quark physics

BSM

BSM & searches

- Leptoquarks
- SUSY: R-parity violating & R-parity conserving (prompt Higgsinos)
- BSM Higgs: charged higgs....
- Long-lived particles
- anomalous couplings (VVV,VVVV)
- Contact-interactions,
- Compositness,
- high-precision EW,
- sterile neutrinos, ..., ..., ..., ...

Heavy ion physics – eA and AA physics

eA unexplored kinematic region

Nuclear structure

- Complementary with HL-LHC (if factorization holds to such low-x?)
- LHeC much cleaner measurements, full flavor sensitivity, TMDs, GPDs, ...

pp and AA collisions

The updated accelerator-optics define the IP's of eA, AA and pp running-mode at the same vertex point

Full physics programme of *pp* and AA collision thinkable

→ 'only' subject to beam-time discussion

Cross-calibration of measurements in ep, pp, AA (syst. uncertianties, normalised measurements)

Benefit from excellently calibrated DISdetector

Complementarity with pp physics at HL-LHC

- At LHC... many measurements are (already) nowadays limited by 'modelling' uncertainties, like PDF uncertainties, parton shower uncertainties, $\alpha_s(M_Z)$, etc...
 - Several phenomenological interpretations are limited (N3LO Higgs,...), Searches ...
- Low-x: gluon is poorly known nowadays (saturation, BFKL, etc...)
- High-x:

Precision measurements at LHeC, and the complementarity of the measurements will greatly turn the HL-LHC into a precision Higgs facility

Detector requirements

Detector Demands at LHeC

Neutral current (NC) $ep \rightarrow eX$

- Scattered electron e towards small angle (< 179°) to access low- Q^2 events
- Hadron (X) forward-going (high-x)
- Flavour tagging for decomposing PDFs

Charged current (CC) $ep \rightarrow vX$

• missing pT: need hermetic detector*small beam holes (<1°) + good calorimeter energy resolution

Higgs couplings

- Flavor tagging in forward direction
- Jet resolution for jet mass (m_H) reoncstruction

Diffraction, top-physics, photoproduction, BSM, ... No pile-up, much less radiation, etc...

Additional demands for AA (and pp) physics programme

Updated baseline detector design

- Based on LHC & HERA experience & HL-LHC plans
- Aim: compact, modular and very hermetic detector
- Coverage: 1 to 179 degrees

Main components

- High acceptance silicon tracking system
- LAr electromagnetic calorimeter
- Detector & steering magnets
- Iron-Scintillator hadronic calorimeter
- Forward backward calo (Si/W, Si/Cu, ...)
- Forward (p/n) & Backward (e/γ) taggers
- Muon system

Magnetic field

- Dipole magnet integrated in the detector to bend electron beam
 - Beam-2 p and e brought in head-on collisions
 - Beam-1 traversing unaffected

- **Updated Field values:**
 - 3 Tesla (solenoid); 0.15 Tesla (dipole)

Re-desigend & optimised IR in CDR2020 Further improvements for this conference

Synchrotron radiation fan (green)

Circular/elliptical thin beam pipe to accommodate the outgoing synchrotron radiation fan:

- Specs & Studies from LHeC CDR: Beryllium 2.5-3 mm thickness
- Circular(x)=2.2cm; Elliptical(-x)=-10., y=2.2cm

Central tracker

Option: Low-material tracker by DMAPS

- CMOS sensors (HV-CMOS) with integrated readout electronics
- Thin sensors: small material budget
- 5–8 layers for -3.5<η<4
- ≥ 2 hits for $-4.2 < \eta < 5$

Calorimetry

High-performance barrel calorimeter (EMC)

- New baseline design: Liquid Argon EMC with accordion structure (ATLAS like)
- EMC inside solenoid with shared cryostat

Hadronic calorimeter in barrel

sampling calorimeter (steel & scintillating tiles)

Fwd/Bwd Calorimeter

- Fine-segmented plugs with compact shower
- Radiation hard design (Fwd), e/π -separation (Bwd)

Baseline configuration	n	η coverage	angular coverage
EM barrel	LAr	$-2.3 < \eta < 2.8$	6.6° – 168.9°
Had barrel+Ecap	Sci-Fe	(~ behind EM barrel)	
EM+Had forward	Si-W	$2.8 < \eta < 5.5$	0.48° –
EM+Had backward	Si-Pb	$-2.3 < \eta < -4.8$	-179.1°

Muon System

Muons

- Higgs, direct W, LFV, semi-leptonic deca
- tagging, trigger, tracking,...

Baseline layout of muon system

- Use solenoid return as B-field
- Good tagging & trigger capabilities
- 2 stations, each with 3 layers

Muon system

- Thin RPC (1mm gas gap) → high rate & timing (<1ns)
- sMDT ϕ = 1.5cm drift tubes for precise position measurement

Possible extensions & studies

- Fwd toroid or outer solenoid
- Explore twin solenoid option

- Total area ~ 400 m²
- Single unit detect: 2-5 m²
- Max.rate: 3 kHz/cm

- Rad. Hard.: 0.3 C/cm²
- Time res.: ~0.4 ns
- Spatial res.: 1mm (RPC);
 - 80 µm (MDT single tube)

LHeC Adaption from ATLAS Phase-I RPC-MDT assembly

Summary

The proposed LHeC project

• 50 GeV electron from ERL on 7TeV proton (√s=1.3TeV), synchronous with LHC & high-luminosity *ep* collisions

Very rich physics programme

- Higgs, Proton structure, QCD, heavy flavors, Electroweak, HI, top-quark, searches, BSM, etc...
- Complementary and supportive to pp physics at HL-LHC

Recent updates

- Accelerator-optics define the IP's of eA, AA and pp running-mode at the same vertex point
- B-field 3.0T, HV-CMOS tracker with 10 layers, accordion-LAr,
- Larger silicon tracker (now 80cm in diameter)
- Apparent overlap with HI (A3) proposal (tracker, physics, LHC-P2, ...)
 → Why not combine the two and make the best out of IP2@HL-LHC?

