

The Problem

- Nowadays ML algorithms are getting bigger and bigger in size to reach higher and higher
 performance

GoogleNet Latency: ~ms

- In many application low latency and minimal resources-utilization/energy consumption are although the main limitation

The solution

Compression and simplification!

We present the combined result of 3 general use and effective compression techniques:

- Input Fragmentation

- Quantization

- Knowledge Distillation

DataSample/structure

Realistic toy simulation of a HEP muon detector (RPC) of the ATLAS experiment

- Track bended due to magnetic field
- Electronic + experimental noise added

- 700kimages

Example input image

Constraints

Three main aspects guided the choices taken for this project:

- Occupancy: fit within the FPGA resources
- Latency: run in less than ~400 ns.
- Fake Rate: less than ~2\%.

Teacher architecture

To keep it simple, we studied a simple Convolutional Neural Network (CNN) architecture (VGG-like)

\square	$=$ Conv2D
\square	$=$ Activation
	$=$ MaxPooling2D
	$=$ Flatten
	$=$ Dense

Input fragmentation

- Slide a 9×32 sector with variable stride
- Select the 9×32 sector with the largest number of hits
- AvaragePool $(1,2)$ to halve the number of pixels

Input fragmentation

- 50% of the particle track is contained in more than 90% of the fragments regardless of the stride

Quantization

- Each weight of the network can be described with diminished precision

Weight value

Activation

Quantization-Aware Training

We quantized uniformly every part of the network but the last layer BEFORE training

Knowledge Distillation

Knowledge Distillation

Knowledge Distillation

Knowledge Distillation

Knowledge Distillation

Higher plateau efficiency

Performance-1

Efficiency curves

- Even greater improvements from QAT and KD combination

08/07/21

4 bits/weight

Performance - 2

Physical quantities
Evident benefits from KD in all the physical metrics

Fake rate constraint reached for all \# bits through KD

Performance-2

Physical quantities

- Possible explanation: network with higher precision are more likely to reconstruct partial patterns

Performance-3

Quantized Teacher vs non-quantized Teacher

- A quantized Teacher seems to lead to worse results

Implementation

Resources occupation

Numbers for 9×384 model not reported since not synthesizable

Model (9×16)	BRAM	DSPs	FF	LUT	Latency (cycles)
Teacher	1123	31.7 k	2.4 M	265.6 k	640
Student 32 bit	171	3.8 k	247 k	31 k	222
QStudent 4 bit	11	6	14.3 k	29.5 k	183
QStudent 3 bit	11	0	11.6 k	23.3 k	182

- Occupation almost negligible in respect to total FPGA resources! (Virtex Ultrascale+13p)

Model (9×16)	BRAM	DSPs	FF	LUT
Teacher (\%)	20	258	69	15
Student 32 bit (\%)	3	31	7	1
QStudent 4 bit (\%)	~ 0	~ 0	~ 0	1
QStudent 3 bit (\%)	~ 0	~ 0	~ 0	1

Model (9×16)	BRAM	DSPs	FF	LUT	Latency (cycles)
Student 32 bit	6.6	8.3	9.7	8.5	2.9
QStudent 4 bit	102	5.28 k	168	9	3.5
QStudent 3 bit	102	nd	218	11.4	3.5

- Latency requirement met for Student models with less than 4 bits/weight (clock period: 2 ns)
- Compression factors relative to Teacher model

Conclusions

- We showed an effective and tunable approach to reach impressive memory/latency constraint
- ~ 100 times less weights
- Latency<390ns
- Fake rate lower than 2\%
- We observed a noticeable improvement from the combination of Fragmentation, QAT, and KD

