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The Problem
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• Nowadays ML algorithms are getting bigger and 
bigger in size to reach higher and higher 
performance

• In many application low latency and minimal 
resources-utilization/energy consumption are 
although the main limitation 

GoogleNet Latency: ~𝒎𝒔



The solution

Compression and simplification!

We present the combined result of 3 general use 
and  effective compression techniques:

• Input Fragmentation

• Knowledge Distillation

• Quantization
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DataSample/structure
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Example input image

Realistic toy  simulation of a HEP muon detector (RPC) of the 
ATLAS experiment
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• Track bended due to magnetic field

• Electronic + experimental noise added

Target: (𝑝! , 𝜂)

• 700k images

3 < 𝑝! < 20 𝐺𝑒𝑉



Constraints
Three main aspects guided the choices taken for this project:

• Occupancy: fit within the FPGA resources

• Latency: run in less than ∼400 ns.

• Fake Rate: less than ∼2‰.
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Teacher architecture
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= Conv2D
= Activation

= MaxPooling2D
= Flatten
= Dense

To keep it simple, we studied a simple Convolutional Neural Network (CNN) 
architecture (VGG-like)

x2 x3

(𝑝-
./01, 𝜂./01)



Input fragmentation

Stride (16)
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9x384
Pixels

9x16
Pixels

• Slide a 9x32 sector with variable stride

• Select the 9x32 sector with the largest number of hits

• AvaragePool (1,2) to halve the number of pixels

24 times smaller input



Input fragmentation
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• 50% of the particle track is contained in more than 
90% of the fragments regardless of the stride 



Quantization
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(Teacher)

• Each weight of the network can be described with 
diminished precision 

We quantized uniformly every part of the network but 
the last layer BEFORE training

Weight value
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Activation

Quantization-Aware Training 2 bits Teacher training 
never converges



Knowledge Distillation
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Hint loss 1

Prediction

Prediction

Truth label

Standard lossTotal loss

Pre-trained teacher

Student

Hint loss 2

Hint loss 3

= Conv2D
= Relu
= MaxPooling2D
= Flatten
= Dense

Soft label

Hint loss

Bound



Knowledge Distillation
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Knowledge Distillation
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Knowledge Distillation
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Knowledge Distillation
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• Modest but evident improvement for 32 bits fp weights

Higher plateau efficiency

Lower fake rate

Teacher 9x384 Teacher 9x16 Student 9x16

73 k param 10 k param 750 param

7.3

Fragmentation Distillation

13

compression simplification

• ~100 times less parameters



Performance - 1
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4 bits/weight3 bits/weight

Efficiency curves
• Even greater improvements from QAT and KD combination



Performance - 2
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Physical quantities

Evident benefits from KD in all the physical metrics

Fake rate constraint reached for all # bits through KD

7.5 < 𝑝! < 12.5 𝐺𝑒𝑉𝑝! > 17 𝐺𝑒𝑉



Performance - 2
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• Possible explanation: network with higher precision are more likely to 
reconstruct partial patterns

Physical quantities



Performance - 3
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Quantized Teacher vs non-quantized Teacher

• A quantized Teacher seems to lead to worse results



Implementation
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Model architecture C++ configuration VHDL firmware



Resources occupation
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• Latency requirement met for Student models with 
less than 4 bits/weight (clock period: 2 ns)

• Occupation almost negligible in respect to total 
FPGA resources! (Virtex Ultrascale+ 13p)

• Compression factors relative to Teacher model

Numbers for 9x384 model not 
reported since not synthesizable



Conclusions

• We showed an effective and tunable approach to reach impressive 
memory/latency constraint
• ~ 100 times less weights
• Latency < 390 ns
• Fake rate lower than 2‰

• We observed a noticeable improvement from the combination of 
Fragmentation, QAT, and KD
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