

The Problem

 Nowadays ML algorithms are getting bigger and bigger in size to reach higher and higher performance

GoogleNet Latency: $\sim ms$

• In many application low latency and minimal resources-utilization/energy consumption are although the main limitation

The solution

Compression and simplification!

We present the combined result of 3 general use and effective compression techniques:

• Input Fragmentation

Knowledge Distillation

Quantization

DataSample/structure

Realistic toy simulation of a HEP muon detector (RPC) of the ATLAS experiment

- Track bended due to magnetic field
- Electronic + experimental noise added

700k images

Target:
$$(p_T, \eta)$$

 $3 < p_T < 20 \ GeV$

Constraints

Three main aspects guided the choices taken for this project:

Occupancy: fit within the FPGA resources

• Latency: run in less than \sim 400 ns.

• Fake Rate: less than ~2\%.

Teacher architecture

To keep it simple, we studied a simple Convolutional Neural Network (CNN) architecture (VGG-like)

08/07/21

Input fragmentation

- Slide a 9x32 sector with variable stride
- Select the 9x32 sector with the largest number of hits
- AvaragePool (1,2) to halve the number of pixels

Input fragmentation

 50% of the particle track is contained in more than 90% of the fragments regardless of the stride

Quantization

Each weight of the network can be described with diminished precision

Quantization-Aware Training

We quantized uniformly every part of the network but the last layer **BEFORE** training

08/07/21

Modest but evident improvement for 32 bits fp weights

Higher plateau efficiency

Efficiency curves

Even greater improvements from QAT and KD combination

Offshell-2021

Physical quantities

Evident benefits from KD in all the physical metrics

Fake rate constraint reached for all # bits through KD

Physical quantities

 Possible explanation: network with higher precision are more likely to reconstruct partial patterns

Quantized Teacher vs non-quantized Teacher

• A quantized Teacher seems to lead to worse results

Implementation

Resources occupation

Numbers for 9x384 model not reported since not synthesizable

Model (9×16)	BRAM	DSPs	FF	LUT	Latency (cycles)
Teacher	1123	31.7 k	2.4 M	265.6 k	640
Student 32 bit	171	3.8 k	247 k	31 k	222
QStudent 4 bit	11	6	14.3 k	29.5 k	183
QStudent 3 bit	11	0	11.6 k	23.3 k	182

 Latency requirement met for Student models with less than 4 bits/weight (clock period: 2 ns)

 Occupation almost negligible in respect to total FPGA resources! (Virtex Ultrascale+ 13p)

Teacher (%) 20 258 69 15 Student 32 bit (%) 3 31 7 1 OStudent 4 bit (%) ~ 0 ~ 0 ~ 0 1	Model (9×16)	BRAM	DSPs	FF	LUT
	Teacher (%)	20	258	69	15
OStudent 4 bit (%) ~ 0 ~ 0 ~ 0 1	Student 32 bit (%)	3	31	7	1
1010 (70)	QStudent 4 bit $(\%)$	~ 0	~ 0	~ 0	1
QStudent 3 bit (%) ~ 0 ~ 0 ~ 0 1	QStudent 3 bit (%)	~ 0	~ 0	~ 0	1

Model (9×16)	BRAM	DSPs	FF	LUT	Latency (cycles)
Student 32 bit	6.6	8.3	9.7	8.5	2.9
QStudent 4 bit	102	$5.28 \mathrm{\ k}$	168	9	3.5
QStudent 3 bit	102	nd	218	11.4	3.5

Compression factors relative to Teacher model

Conclusions

- We showed an effective and tunable approach to reach impressive memory/latency constraint
 - ~ 100 times less weights
 - Latency < 390 ns
 - Fake rate lower than 2‰

 We observed a noticeable improvement from the combination of Fragmentation, QAT, and KD