Isospin extrapolation as a method to study inclusive b->sll decays

Offshell-21 virtual HEP conference

Isospin extrapolation as a method to study inclusive $\bar{B} \rightarrow X_{s} \ell^{+} \ell^{-}$decays
Yasmine Amhis, Patrick Owen

 approach. Several experimental advantages are seen which have the potential to make measurements of inclusive $\bar{B} \rightarrow X_{s} \ell^{+} \ell^{-}$decays tractable at a hadron collider.

Yasmine Amhis, Patrick Owen

Universität
Zürich ${ }^{\text {UZH }}$

b->sll decays

- b->sll decays are loop suppressed semileptonic decays. Their loop suppression allows for NP sensitivity up to $\sim 50 \mathrm{TeV}$.
- They have been part of LHCb's core program for years.
b

- Focus has been on exclusive decays, whereby the strange quark hadronises into a specific final state.

- Exclusive decays are fully reconstructed $->$ signal peaks at the B mass.

Where are we

- Two sets of deviations with the interpretation limited either by theory or statistics.

Limited by statistical uncertainties

Limited by theoretical interpretation

- Inclusive $\mathrm{b}->$ sll measurements offer a way forward for both these limitations.

Inclusive b—>sll decays

- Instead of reconstructing a specific hadronic final state, allow the strange quark to hadronise whatever it likes
b

- Inclusive decays have complementary (and generally more precise) theoretical uncertainties compared to exclusive ones.

- For the branching fraction, uncertainty saturated by experimental uncertainties rather than theoretical ones.

Methods to study inclusive b->sll decays

- Inclusive $b->$ sll decays have been the domain of the B-factories.
- They employ a sum-of-exclusives approach:
- Reconstruct as many exclusive final states as possible (typically 50% coverage).
- Extrapolate missing modes using a hadronisation model (e.g. with JETSET).

Belle, Phys. Rev. D 93, 032008 (2016)			
\bar{B}^{0} decays		B^{-}decays	
	$\left(K_{S}^{0}\right)$	K^{-}	
$K^{-} \pi^{+}$	$\left(K_{S}^{0} \pi^{0}\right)$	$K^{-} \pi^{0}$	

- For Belle-Il a fully inclusive approach, whereby only the two leptons are reconstructed, is also foreseen.
- This has no systematic uncertainty associated with the extrapolation, but suffers from larger background.

Our approach

- Our approach is to reconstruct an additional charged kaon in addition to the two leptons.

- This can be seen as a hybrid of the fully inclusive and sum-of-exclusives modes.
- Still needs an extrapolation, but hopefully cleaner (or at least complementary) than from a sum-ofexclusives method.
- We are not claiming to have invented isospin extrapolation here. This has been used to fill in some gaps in the sum-of-exclusives method. We instead promote this to the main extrapolation of the analysis.

Fast simulation

- To explore some experimental advantages, generate some fast simulation with RapidSim. axdiv. 112.07899
- B-hadrons produced with kinematics expected within the LHCb acceptance.
- Smearing to account for reconstruction.
- We generate two exclusive channels as a proxy for inclusive decays.
- $B^{+}->K^{+} \pi^{-} \pi^{+} \mu^{+} \mu^{-}$
- $\mathrm{B}^{+}->\mathrm{K}^{+} \pi^{-} \mu^{+} \mu^{-}$
- In both cases the pions are missing from the visible signature.
- Apply $\mu p_{T}>300 \mathrm{MeV} / \mathrm{c}$ to account for trigger effects in run III.

Background to these decays

- There are two main backgrounds to an inclusive analysis:
- Combinatorial, whereby accidental combinations of different B/D decays are made.
- Double-semileptonic: $B \rightarrow\left(D \rightarrow K^{-} \ell^{+} \nu_{\ell} X\right) \ell^{-} \nu_{\ell} X$

- Combinatorial is easier to distinguish but less well understood.

The sideband

- Combinatorial background is extrapolation into signal region using a sideband (above the B mass).

$K \mu \mu$ visible mass

- Signals are substantially closer to the sideband than in a fully inclusive approach.

The mass of the strange hadron, m_{x}

- An important discriminating variable is the mass of the strange hadron.
- Also selected to reduce background in sum-of-exclusives analyses.
- If we use the rest frame approximation [1] to calculate $m x_{s}$, see an improvement

$$
\left(p_{B}\right)_{z}=\frac{m_{B}}{m_{\text {reco }}}\left(p_{\text {reco }}\right)_{z}
$$

- KIl signature has better resolution on the mass c.f. fully inclusive approach.

Other advantages

- Other advantages include:
- A better defined vertex (three tracks instead of two).
P. Alvarez-Cartelle, W. Altmannshofer, Beyond the flavour anomalies II workshop
- Flavour tagged for $A_{C P} / A_{\text {fB }}$ measurements.
- Access to opposite sign m_{KI} combination.

- In order to fully understand the advantages and remaining level of background, a detailed study with full simulation would be required (beyond the scope of the paper).

Comments on the extrapolation

- The extrapolation boils down to calculating the fraction of inclusive $\mathrm{b}->$ sll that produce a charged kaon.

- For B^{0} and B^{+}decays, each $\mathrm{b}->$ sll decay is expected to either a charged or neutral kaon.
- Extrapolation is then done using isospin rules (naively expected to be around 50\%),
- Of course, we do not only produce B^{0} and B^{+}mesons at the LHC.

The complication from $B_{s}{ }^{0}$ and $\Lambda_{b}{ }^{0}$ hadrons

- Naively, isospin extrapolation should account for neutral kaons nicely for both $B_{s}{ }^{0}$ and $\Lambda_{b}{ }^{0}$ hadrons.

- Problem is that there is a fraction of inclusive $B_{s}{ }^{0}$ and $\Lambda_{b}{ }^{0}$ decays which do not produce kaons. This fraction is unknown and extrapolation appears difficult.

	\boldsymbol{B}_{s}^{0}	$I\left(J^{P}\right)=0\left(0^{-}\right)$	
Γ_{51}	$J / \psi(1 S) \phi$		$(1.08 \pm 0.08) \times 10^{-3}$
Γ_{52}	$J / \psi(1 S) \phi \phi$		${ }^{(1.24-2.109)} \times 10^{-5}$
Γ_{53}	$J / \psi(1 S) \pi^{0}$		$<1.2 \times 10^{-3}$
Γ_{54}	$J / \psi(15) \eta$		$(4.0 \pm 0.7) \times 10^{-4}$
Γ_{55}	$J / \psi(1 S) K_{s}^{0}$		$(1.92 \pm 0.14) \times 10^{-5}$
Γ_{56}	$J / \psi(1 S) \vec{K}^{*}(892)^{0}$		$(4.1 \pm 0.4) \times 10^{-5}$
Γ_{57}	$J^{\prime \prime} \psi(1 S) \eta^{\prime}$		$(3.3 \pm 0.4) \times 10^{-4}$
Γ_{58}	$J / \psi(11) \pi^{+} \pi^{-}$		$(2.09 \pm 0.23) \times 10^{-4}$

Decay Modes		$I\left(J^{P}\right)=0\left(3 / 2^{-}\right)$		
Mode		Fraction ($\left.\Gamma_{i} / \Gamma\right)$	Scale Factor/ Conf. Level	$\begin{aligned} & P \\ & (\mathrm{MeV} / \mathrm{c}) \end{aligned}$
Γ_{1}	$N \bar{K}$	20-30\%		433
Γ_{2}	$\Sigma \pi$	20-40\%		410
Γ_{3}	A σ	$(5.0 \pm 2.0) \%$		
Γ_{4}	Aлn	$\sim 25 \%$		419

$B_{s}{ }^{0}$ and $\Lambda_{b}{ }^{0}$ hadron decays as background

- These decays have smaller production and branching fractions than the B^{+}and B^{0} decays.

- We therefore propose to treat them as background and subtract them for the branching fraction.
- Dedicated auxiliary measurements can be useful:
- For $\mathrm{B}_{\mathrm{s}}: \mathcal{B}\left(B_{s} \rightarrow K^{+} K^{-} X \ell^{+} \ell^{-}\right)$
- For $\Lambda_{b}: \mathcal{B}\left(\Lambda_{b}^{0} \rightarrow p K^{-} X \ell^{+} \ell^{-}\right)$
- It is clear that a resulting systematic uncertainty will arise from this.

Prospects for theoretically precise observables

- Of course none of these matters for observables which are either reliably zero in the SM (AcP) or hadronic uncertainties cancel (LFU ratios).
- In this case, missing an unknown fraction of the inclusive decay does not spoil the comparison with the SM.

- Here we note the fact that the inclusive BF is around order of magnitude higher than exclusive channels.
- By the end of run III, we expect around $1 \mathrm{M} X_{b} \rightarrow K^{+} X \ell^{+} \ell^{-}$candidates(!!).
- Due to the low reconstruction efficiency at LHCb, expect any LFU/Acp measurements to be statistically independent than exclusive ones (e.g. R_{k}).
- Can afford to be brutal with the selection and still have a large signal yield.

Summary

- We propose to use the signature $X_{b} \rightarrow K^{+} X \ell^{+} \ell^{-}$as a proxy for inclusive b->sll decays.
- Several experimental advantages are expected with respect to a fully inclusive approach.
- Sideband closer to the signal - easier extrapolation for combinatorial background.
- Extrapolation complicated at LHC by presence of B_{s} and $\Lambda_{\mathrm{b}}{ }^{0}$ hadrons - propose to treat them as background.
- Expect the largest sample of self-tagged $b->$ sll decays in the world with this method - could provide statistically independent measurements of clean observables.

