Isospin extrapolation as a method to study inclusive b—>sll decays

Offshell-21 virtual HEP conference

Isospin extrapolation as a method to study inclusive $\bar{B} \to X_s \ell^+ \ell^-$ decays

Yasmine Amhis, Patrick Owen

A novel approach to reconstruct inclusive $\bar{B} \to X_s \ell^+ \ell^-$ decays is presented. The method relies on isopsin symmetry to extrapolate the semi-inclusive signature $X_b \to K^+ \ell^+ \ell^- X$ to the fully inclusive rate in B^+ and B^0 decays. We investigate the possibility to measure branching fractions and other observables such as lepton universality ratios and CP asymmetries. As a proof of concept, fast simulation is used to compare the $X_b \to K^+ \ell^+ \ell^- X$ signature with a fully inclusive approach. Several experimental advantages are seen which have the potential to make measurements of inclusive $\bar{B} \to X_s \ell^+ \ell^-$ decays tractable at a hadron collider.

Yasmine Amhis, Patrick Owen

b—>sll decays

b—>sll decays are loop suppressed semileptonic decays.
 Their loop suppression allows for NP sensitivity up to ~50TeV.

- They have been part of LHCb's core program for years.
- Focus has been on exclusive decays, whereby the strange quark hadronises into a specific final state.

• Exclusive decays are fully reconstructed -> signal peaks at the B mass.

Where are we

• Two sets of deviations with the interpretation limited either by theory or statistics.

• Inclusive b—>sll measurements offer a way forward for both these limitations.

Inclusive b—>sll decays

 Instead of reconstructing a specific hadronic final state, allow the strange quark to hadronise whatever it likes

b $\sum_{\ell} s$

 Inclusive decays have complementary (and generally more precise) theoretical uncertainties compared to exclusive ones.

 For the branching fraction, uncertainty saturated by experimental uncertainties rather than theoretical ones.

Methods to study inclusive b—>sll decays

- Inclusive b—>sll decays have been the domain of the B-factories.
- They employ a sum-of-exclusives approach:
 - Reconstruct as many exclusive final states as possible (typically 50% coverage).
 - Extrapolate missing modes using a hadronisation model (e.g. with JETSET).

Belle, Phys. Rev. D 93, 032008 (2016)

\bar{B}^0 decays		B^{-} decays		
$K^-\pi^+$	(K_{S}^{0}) $(K_{S}^{0}\pi^{0})$	K^{-} $K^{-}\pi^{0}$	$K_S^0 \pi^-$	
	$(K_S^0 \pi^- \pi^+ \pi^0)$	$K^{-}\pi^{+}\pi^{-}$ $K^{-}\pi^{+}\pi^{-}\pi^{0}$ $K^{-}\pi^{+}\pi^{-}\pi^{+}\pi^{-}$	$K_S^0\pi^-\pi^0 \ K_S^0\pi^-\pi^+\pi^- \ (K_S^0\pi^-\pi^+\pi^-\pi^0)$	

- For Belle-II a fully inclusive approach, whereby only the two leptons are reconstructed, is also foreseen.
 - This has no systematic uncertainty associated with the extrapolation, but suffers from larger background.

Our approach

Our approach is to reconstruct an additional charged kaon in addition to the two leptons.

- This can be seen as a hybrid of the fully inclusive and sum-of-exclusives modes.
 - Still needs an extrapolation, but hopefully cleaner (or at least complementary) than from a sum-of-exclusives method.
- We are not claiming to have invented isospin extrapolation here. This has been used to fill in some gaps
 in the sum-of-exclusives method. We instead promote this to the main extrapolation of the analysis.

Fast simulation

- To explore some experimental advantages, generate some fast simulation with RapidSim. arXiv:1612.07489
 - B-hadrons produced with kinematics expected within the LHCb acceptance.
 - Smearing to account for reconstruction.
- We generate two exclusive channels as a proxy for inclusive decays.
 - $B^+ > K^+ \pi^- \pi^+ \mu^+ \mu^-$
 - $B^+ > K^+ \pi^- \mu^+ \mu^-$
- In both cases the pions are missing from the visible signature.
- Apply μ p_T > 300 MeV/c to account for trigger effects in run III.

Background to these decays

- There are two main backgrounds to an inclusive analysis:
 - Combinatorial, whereby accidental combinations of different B/D decays are made.
 - Double-semileptonic: $B \to (D \to K^- \ell^+ \nu_\ell X) \ell^- \nu_\ell X$

• Combinatorial is easier to distinguish but less well understood.

The sideband

• Combinatorial background is extrapolation into signal region using a sideband (above the B mass).

Signals are substantially closer to the sideband than in a fully inclusive approach.

The mass of the strange hadron, mxs

- An important discriminating variable is the mass of the strange hadron.
 - Also selected to reduce background in sum-of-exclusives analyses.
- If we use the rest frame approximation [1] to calculate m_{Xs} , see an improvement

$$(p_B)_z = \frac{m_B}{m_{\rm reco}}(p_{\rm reco})_z$$

• Kll signature has better resolution on the mass c.f. fully inclusive approach.

Other advantages

- Other advantages include:
 - A better defined vertex (three tracks instead of two).
 - Flavour tagged for A_{CP}/A_{FB} measurements.
 - Access to opposite sign mkl combination.

• In order to fully understand the advantages and remaining level of background, a detailed study with full simulation would be required (beyond the scope of the paper).

Comments on the extrapolation

• The extrapolation boils down to calculating the fraction of inclusive b—>sll that produce a charged kaon.

- For B⁰ and B⁺ decays, each b—>sll decay is expected to either a charged or neutral kaon.
 - Extrapolation is then done using isospin rules (naively expected to be around 50%)
- Of course, we do not only produce Bo and B+ mesons at the LHC...

The complication from B_{s0} and Λ_{b0} hadrons

• Naively, isospin extrapolation should account for neutral kaons nicely for both B_{s^0} and Λ_{b^0} hadrons.

• Problem is that there is a fraction of inclusive B_{s^0} and Λ_{b^0} decays which do not produce kaons. This fraction is unknown and extrapolation appears difficult.

	\boldsymbol{B}_{s}^{0}	$I(J^P) = 0(0^-)$	
Γ ₅₁	$J/\psi(1S)\phi$		$(1.08 \pm 0.08) \times 10^{-3}$
Γ_{52}	$J/\psi(1S)\phi\phi$		$(1.24^{+0.17}_{-0.19}) \times 10^{-5}$
Γ_{53}	$J/\psi(1S)\pi^0$		$< 1.2 \times 10^{-3}$
Γ_{54}	$J/\psi(1S)\eta$		$(4.0 \pm 0.7) \times 10^{-4}$
Γ_{55}	$J/\psi(1S)K_S^0$		$(1.92 \pm 0.14) \times 10^{-5}$
Γ_{56}	$J/\psi(1S)\overline{K}^{*}(892)^{0}$		$(4.1 \pm 0.4) \times 10^{-5}$
Γ_{57}	$J/\psi(1S)\eta'$		$(3.3 \pm 0.4) \times 10^{-4}$
Γ_{58}	$J/\psi(1S)\pi^+\pi^-$		$(2.09 \pm 0.23) \times 10^{-4}$

		\Lambda (1690)	$I(J^P) = 0(3/2^-)$		
Decay I	Modes				
Mode			Fraction (Γ_i / Γ)	Scale Factor/ Conf. Level	P (MeV/c)
Γ_1	$N\overline{K}$		20-30%		433
Γ_2	$\Sigma\pi$		20-40%		410
Γ_3	$\Lambda \sigma$		$(5.0 \pm 2.0)\%$		
Γ_4	$\Lambda\pi\pi$		~ 25%		419

B_s⁰ and Λ_b⁰ hadron decays as background

• These decays have smaller production and branching fractions than the B+ and B⁰ decays.

- We therefore propose to treat them as background and subtract them for the branching fraction.
- Dedicated auxiliary measurements can be useful:
 - For B_s: $\mathcal{B}(B_s \to K^+K^-X\ell^+\ell^-)$
 - For $\Lambda_b: \mathcal{B}(\Lambda_b^0 \to pK^-X\ell^+\ell^-)$
- It is clear that a resulting systematic uncertainty will arise from this.

Prospects for theoretically precise observables

• Of course none of these matters for observables which are either reliably zero in the SM (A_{CP}) or hadronic uncertainties cancel (LFU ratios).

In this case, missing an unknown fraction of the inclusive decay does not spoil the comparison with

the SM.

- Here we note the fact that the inclusive BF is around order of magnitude higher than exclusive channels.
- By the end of run III, we expect around 1M $X_b \to K^+ X \ell^+ \ell^-$ candidates(!!).
 - Due to the low reconstruction efficiency at LHCb, expect any LFU/A_{CP} measurements to be statistically independent than exclusive ones (e.g. R_K).
 - Can afford to be brutal with the selection and still have a large signal yield.

Summary

- We propose to use the signature $X_b \to K^+ X \ell^+ \ell^-$ as a proxy for inclusive b—>sll decays.
- Several experimental advantages are expected with respect to a fully inclusive approach.
 - Sideband closer to the signal easier extrapolation for combinatorial background.
- Extrapolation complicated at LHC by presence of B_s and Λ_{b^0} hadrons propose to treat them as background.
- Expect the largest sample of self-tagged b—>sll decays in the world with this method
 - could provide statistically independent measurements of clean observables.