
MadFlow: automating Monte Carlo simulation on
GPU for particle physics processes

Marco Rossi1,2

in collaboration with S. Carrazza1, J.C. Martinez1 and M. Zaro1

1University of Milan 2CERN-openlab

arXiv:2106.10279 [physics.comp-ph]

Offshell 2021 - The virtual HEP conference on Run4@LHC
6− 9 July 2021

https://arxiv.org/pdf/2106.10279.pdf

Parton-level Monte Carlo generators

Behind most predictions for LHC phenomenology lies the numerical
computation of the following integral:

∫
dx1 dx2 f1(x1, q

2)f2(x2, q
2)|M({pn})|2J n

m({pn})

→ f (x , q): Parton Distribution
Function

→ |M|: Matrix element of the process

→ {pn}: Phase space for n particles.

→ J : Jet function for n particles to
m.

Marco Rossi
(Openlab-CERN University of Milan) MadFlow Offshell 2021 2/21

Parton-level Monte Carlo generators ingredients:

∫
dx1 dx2 f1(x1, q

2)f2(x2, q
2)|M({pn})|2J n

m({pn})

The integrals are usually computed
numerically using CPU-expensive
Monte Carlo generators.

integrator

phase space

cuts

matrix element

parton distribution function

histogramming/analysis

result!

Marco Rossi
(Openlab-CERN University of Milan) MadFlow Offshell 2021 3/21

GPU computing

Monte Carlo simulations are highly parallelizable, which make them
a great target for GPU computation.

0 10 20 30 40 50
Time (s)

2 cores

4 cores

8 cores

16 cores

Titan V

RTX 2080 Ti

Intel(R) Core(TM) i9-9980XE CPU @ 3.00GHz
Quick Example:
n-dimensional gaussian
function

I =

∫
dx1 . . . dxn e

−x2
1−···−x2

n

Every event is independent of
all other events!

GPU computation can increase the performance of the integrator
by more than an order of magnitude.

Marco Rossi
(Openlab-CERN University of Milan) MadFlow Offshell 2021 4/21

Why is then GPU computing not more widespread in HEP?

Most of the more advance theoretical calculations still rely
exclusively on CPU.

7 Diminishing returns
I Huge CPU-optimized Fortran 77/90 or C++ codebases.
I Publication-ready results are easily obtained expanding existing

code.
I It’s catch-22: porting the code becomes more and more

complicated.

7 Lack of expertise
I CPU expertise is not necessarily applicable to GPU

programming.
I New programming languages: Cuda? OpenCL?
I Low-reward situation when trying to achieve previous

performance.

7 Lack of tools
I Many ready-made tools for CPU.
I GPUs are still decades behind in the hep-ph world.

Marco Rossi
(Openlab-CERN University of Milan) MadFlow Offshell 2021 5/21

Why is then GPU computing not more widespread in HEP?

Most of the more advance theoretical calculations still rely
exclusively on CPU.

7 Diminishing returns
I Huge CPU-optimized Fortran 77/90 or C++ codebases.
I Publication-ready results are easily obtained expanding existing

code.
I It’s catch-22: porting the code becomes more and more

complicated.

7 Lack of expertise
I CPU expertise is not necessarily applicable to GPU

programming.
I New programming languages: Cuda? OpenCL?
I Low-reward situation when trying to achieve previous

performance.

7 Lack of tools
I Many ready-made tools for CPU.
I GPUs are still decades behind in the hep-ph world.

Marco Rossi
(Openlab-CERN University of Milan) MadFlow Offshell 2021 5/21

Why is then GPU computing not more widespread in HEP?

Most of the more advance theoretical calculations still rely
exclusively on CPU.

7 Diminishing returns
I Huge CPU-optimized Fortran 77/90 or C++ codebases.
I Publication-ready results are easily obtained expanding existing

code.
I It’s catch-22: porting the code becomes more and more

complicated.

7 Lack of expertise
I CPU expertise is not necessarily applicable to GPU

programming.
I New programming languages: Cuda? OpenCL?
I Low-reward situation when trying to achieve previous

performance.

7 Lack of tools
I Many ready-made tools for CPU.
I GPUs are still decades behind in the hep-ph world.

Marco Rossi
(Openlab-CERN University of Milan) MadFlow Offshell 2021 5/21

Lack of Tools

Running on a CPU:

Worry only about what you are
interested in. For instance, if we
want an NNLO computation for
H → j and we have a Z → j
computation we only need to
change the matrix elements.

integrator

phase space

cuts

matrix element

parton distribution function

histogramming/analysis

result!

Marco Rossi
(Openlab-CERN University of Milan) MadFlow Offshell 2021 6/21

Lack of Tools

Running on a CPU:

Even if we don’t already have
some obscure and private
fortran-based framework already
built, there exists a complete tool
set for producing results.

X PDF providers

X Phase space generators

X Integrator libraries...

some of which can still provide that sweet

70s’ Fortran taste

Cuba

RAMBO

fastjet

madgraph

LHAPDF

Root

result!

Marco Rossi
(Openlab-CERN University of Milan) MadFlow Offshell 2021 6/21

Lack of Tools

Running on a GPU:

There is no such tool set yet

so it needs to be written from
scratch

?????

?????

?????

?????

?????

?????

result!

Marco Rossi
(Openlab-CERN University of Milan) MadFlow Offshell 2021 6/21

Filling up the box: moving with the flow

The flow suite focus on speed
and efficiency for both the
computer and the developer

- Python and TF based engine

- Compatible with other
languages: Cuda, C++

- Seamless CPU and GPU
computation out of the box

- Easily interfaceable with
NN-based integrators

Source code available at:
github.com/N3PDF/VegasFlow

github.com/N3PDF/MadFlow

github.com/N3PDF/PDFFlow

VegasFlow

?????

?????

MadFlow

PDFFlow

?????

result!

Marco Rossi
(Openlab-CERN University of Milan) MadFlow Offshell 2021 8/21

https://github.com/N3PDF/vegasflow
https://github.com/N3PDF/madflow
https://github.com/N3PDF/pdfflow

Interface with Madgraph’s matrix generation

As a first step towards a full
parton-level fixed-order Monte Carlo
generator we interface the ”flow”
suite with Madgraph’s matrix
element generator.

We take advantage of ALOHA to
produce tensorized versions of the
matrix elements that can be
efficiently run in GPU.

We aim to be modular enough that
different ME providers can be used
or even combined.

VegasFlow

?????

?????

MadFlow

PDFFlow

?????

result!

Marco Rossi
(Openlab-CERN University of Milan) MadFlow Offshell 2021 9/21

The MadFlow framework

PDF interpolation

“PDFFlow” interpolating algorithm to match LHAPDF in accuracy
and outperform in performances.

L(x1, x2)⊗ σ̂({~p})PDFFlow

GPU Phase Space

Matrix Element generator

Unweighted Events

AlohaMadFlow

PDF

RAMBO

VegasFlow

Marco Rossi
(Openlab-CERN University of Milan) MadFlow Offshell 2021 10/21

LHAPDF vs PDFFlow

0.0

0.5

1.0

1.5

2.0

2.5

3.0

t[
s]

PDFflow - LHAPDF perfomances

PDFFlow: i9 9980XE (CPU)

PDFFlow: Titan V (GPU)

LHAPDF (CPU)

1 2 3 4 5 6 7 8 9 10

Number of (x,Q) points drawn [×105]

101

102

R
at

io
to

L
H

A
P

D
F

10−12 10−10 10−6 10−2

x

10−15

10−13

10−11

10−9

10−7

10−5

10−3

|f p
−
f l
|

|f l
|+

ε

NNPDF31 nlo as 0118/0, flav = 1

Q = 1.65× 100

Q = 1.70× 100

Q = 4.92× 100

Q = 1.00× 102

Q = 1.00× 103

Q = 1.00× 104

Q = 1.00× 105

Q = 1.00× 106

Q = 2.00× 106

Interpolation in x for fixed Q.

Marco Rossi
(Openlab-CERN University of Milan) MadFlow Offshell 2021 11/21

LHAPDF vs PDFFlow

0.0

0.5

1.0

1.5

2.0

2.5

3.0

t[
s]

PDFflow - LHAPDF perfomances

PDFFlow: i9 9980XE (CPU)

PDFFlow: Titan V (GPU)

LHAPDF (CPU)

1 2 3 4 5 6 7 8 9 10

Number of (x,Q) points drawn [×105]

101

102

R
at

io
to

L
H

A
P

D
F

101 103 105 107

Q

10−15

10−13

10−11

10−9

10−7

10−5

10−3

|f p
−
f l
|

|f l
|+

ε

NNPDF31 nlo as 0118/0, flav = 1

x = 1.0× 10−10

x = 1.0× 10−9

x = 1.1× 10−9

x = 5.0× 10−7

x = 1.0× 10−6

x = 1.0× 10−4

x = 1.0× 10−2

x = 5.0× 10−1

x = 9.9× 10−1

Interpolation in Q for fixed x .

Marco Rossi
(Openlab-CERN University of Milan) MadFlow Offshell 2021 11/21

The MadFlow framework

RAMBO

Phase space generator which takes an array of (n events) random
numbers and returns (n events) an array of phase space points

L(x1, x2)⊗ σ̂({~p})PDFFlow

GPU Phase Space

Matrix Element generator

Unweighted Events

AlohaMadFlow

PDF

RAMBO

VegasFlow

Marco Rossi
(Openlab-CERN University of Milan) MadFlow Offshell 2021 12/21

The MadFlow framework

Matrix Element (at LO)

“Madflow” exploits Madgraph and ALOHA routines to generate
vectorized metacode with TensorFlow primitives.

L(x1, x2)⊗ σ̂({~p})PDFFlow

GPU Phase Space

Matrix Element generator

Unweighted Events

AlohaMadFlow

PDF

RAMBO

VegasFlow

Marco Rossi
(Openlab-CERN University of Milan) MadFlow Offshell 2021 12/21

The MadFlow framework

Unweighted events

“Madflow” exploits Madgraph accept/reject algorithms to provide
unweighted events for queried partonic processes.

L(x1, x2)⊗ σ̂({~p})PDFFlow

GPU Phase Space

Matrix Element generator

Unweighted Events

AlohaMadFlow

PDF

RAMBO

VegasFlow

Marco Rossi
(Openlab-CERN University of Milan) MadFlow Offshell 2021 12/21

Unweighted events and LHE files

I Collect weighted events from PS generator asynchronously.

X IO operation do not harm integration performances.

I Dump events in Les Houches Event (LHE 3.0) file format.

I Exploit Madgraph unweighting function to accept/reject
weighted events.

7 Low selection efficiency due to RAMBO (around 5%).

Marco Rossi
(Openlab-CERN University of Milan) MadFlow Offshell 2021 13/21

https://arxiv.org/pdf/1405.1067.pdf

Results: accuracy

Exact same ME and
feynman diagrams X

Efficient phase space
(RAMBO) 7

Histograms made with
unweighted events
stored in LHE file X

Good compatibility
within 2− 5% in each
bin X

10

20

30

40

50

g g > t t~
madflow
mg5_aMC

0 50 100 150 200 250
top pT [MeV]

0.5

1.0

1.5

Ra
tio

Top transverse momentum distribution.

Marco Rossi
(Openlab-CERN University of Milan) MadFlow Offshell 2021 14/21

Results: accuracy

Exact same ME and
feynman diagrams X

Efficient phase space
(RAMBO) 7

Histograms made with
unweighted events
stored in LHE file X

Good compatibility
within 2− 5% in each
bin X

5

10

15

20

25

30

35

40
g g > t t~

madflow
mg5_aMC

4 3 2 1 0 1 2 3
top

0.5

1.0

1.5

Ra
tio

Top rapidity distribution.

Marco Rossi
(Openlab-CERN University of Milan) MadFlow Offshell 2021 14/21

MadFlow vs plain Madgraph LO

Event computation time for different processes.

101 102 103

Time (µs)

MG5 aMC@NLO
36 active CPU cores

MadFlow
36 activate CPU cores

MadFlow
GPU Titan V

Event computation time
Intel(R) Core(TM) i9-9980XE CPU @ 3.00GHz gg → tt̄ (3 diagrams)

pp→ tt̄ (7 diagrams)

pp→ tt̄g (36 diagrams)

pp→ tt̄gg (267 diagrams)

X MadFlow outperforms Madgraph for all processes.

7 GPU efficiency decreases with amount of diagrams:
I less GPU memory constraint with new Nvidia A series (40− 80

GB).
I implement compressing techniques.

X Able to handle many diagrams (2000+ for pp → tt̄ggg):
I enough to cover NNLO computation complexity (future work).

Marco Rossi
(Openlab-CERN University of Milan) MadFlow Offshell 2021 15/21

Results: performance

I Generate 1M events.

I Cut pT > 30GeV on
out-going particles.

0 5 10 15
Time (s)

i9-10885H 8 cores 32GB
AMD 2990WX 32 cores 128GB

i9-9980XE 18 cores 128GB
E5-2698 20 cores 256GB

AMD EPYC 7742 64 cores 2TB
NVIDIA Quadro T2000 4GB

AMD Radeon VII 16GB
NVIDIA Titan V 12GB

NVIDIA RTX 2080 Ti 12GB
Titan V + RTX 2080 Ti

NVIDIA V100 32GB
NVIDIA RTX A6000 48GB

MadFlow time for 1M events
 gg tt (3 diagrams)

X Consumer grade GPUs outperform expensive powerful CPUs.

7 No MC performance optimization techniques implemented yet
(ME Leading-Color approximation, MC helicity sampling ...).

Marco Rossi
(Openlab-CERN University of Milan) MadFlow Offshell 2021 16/21

Results: performance
Increasing the number of diagrams works well on GPU.

0 5 10 15 20 25
Time (s)

i9-10885H 8 cores 32GB
AMD 2990WX 32 cores 128GB

i9-9980XE 18 cores 128GB
E5-2698 20 cores 256GB

AMD EPYC 7742 64 cores 2TB
NVIDIA Quadro T2000 4GB

AMD Radeon VII 16GB
NVIDIA Titan V 12GB

NVIDIA RTX 2080 Ti 12GB
Titan V + RTX 2080 Ti

NVIDIA V100 32GB
NVIDIA RTX A6000 48GB

MadFlow time for 1M events
 pp tt (7 diagrams)

0 250 500 750 1000 1250 1500
Time (s)

AMD 2990WX 32 cores 128GB
i9-9980XE 18 cores 128GB

E5-2698 20 cores 256GB
AMD EPYC 7742 64 cores 2TB

AMD Radeon VII 16GB
NVIDIA Titan V 12GB

NVIDIA RTX 2080 Ti 12GB
Titan V + RTX 2080 Ti

NVIDIA V100 32GB
NVIDIA RTX A6000 48GB

MadFlow time for 1M events
 pp ttgg (267 diagrams)

0 50 100 150
Time (s)

i9-10885H 8 cores 32GB
AMD 2990WX 32 cores 128GB

i9-9980XE 18 cores 128GB
E5-2698 20 cores 256GB

AMD EPYC 7742 64 cores 2TB
NVIDIA Quadro T2000 4GB

AMD Radeon VII 16GB
NVIDIA Titan V 12GB

NVIDIA RTX 2080 Ti 12GB
Titan V + RTX 2080 Ti

NVIDIA V100 32GB
NVIDIA RTX A6000 48GB

MadFlow time for 1M events
 pp ttg (36 diagrams)

0 500 1000 1500 2000
Time (s)

AMD 2990WX 32 cores 128GB
i9-9980XE 18 cores 128GB

E5-2698 20 cores 256GB
AMD EPYC 7742 64 cores 2TB

AMD Radeon VII 16GB
NVIDIA Titan V 12GB

NVIDIA RTX 2080 Ti 12GB
Titan V + RTX 2080 Ti

NVIDIA V100 32GB
NVIDIA RTX A6000 48GB

MadFlow time for 100k events
 pp ttggg (2604 diagrams)

Marco Rossi
(Openlab-CERN University of Milan) MadFlow Offshell 2021 17/21

Open source for HEP

Where to obtain the code

The entire Flow suite is open source and can be found at the
N3PDF organization repository github.com/N3PDF

How to install

MadFlow can be installed from repository only.
VegasFlow and PDFFlow can be installed from the repository or
directly with pip:

~$ pip install vegasflow pdfflow

Documentation

The documentation for these tools is accessible at:
MadFlow: madflow.rtfd.io

VegasFlow: vegasflow.rtfd.io

PDFFlow: pdfflow.rtfd.io
Marco Rossi
(Openlab-CERN University of Milan) MadFlow Offshell 2021 19/21

https://github.com/N3PDF
https://github.com/N3PDF/madflow
https://madflow.readthedocs.io
https://VegasFlow.readthedocs.io
https://pdfflow.readthedocs.io

Summary

I GPU computation is increasingly gaining traction in many
areas of science but it is still not heavily used in particle
physics phenomenology.

→ Is competitive with CPU for MC simulations.

→ A lot of effort on GPU-based computations.

X VegasFlow, PDFFlow and MadFlow provide a framework to
run on any device.

X Generate all the different pieces (ME, PS, PDFs, integration
algorithm) needed for fixed order calculations.

X Leading order integration and unweighted events generator in
LHE format.

Marco Rossi
(Openlab-CERN University of Milan) MadFlow Offshell 2021 20/21

Thanks!

Marco Rossi
(Openlab-CERN University of Milan) MadFlow Offshell 2021 21/21

Act in parallel: CPU

The way we do Monte Carlo calculations in CPU already allows for
a certain degree of parallelization

I =
1

N

∑
f (~xi)

(the function f (~x) might be
arbitrarily complicated)

Marco Rossi
(Openlab-CERN University of Milan) MadFlow Offshell 2021 22/21

Act in parallel: CPU

The way we do Monte Carlo calculations in CPU already allows for
a certain degree of parallelization

I =
1

N

∑
f (~xi)

(the function f (~x) might be
arbitrarily complicated)

Marco Rossi
(Openlab-CERN University of Milan) MadFlow Offshell 2021 22/21

Act in parallel: CPU

The way we do Monte Carlo calculations in CPU already allows for
a certain degree of parallelization

Marco Rossi
(Openlab-CERN University of Milan) MadFlow Offshell 2021 22/21

Act in parallel: GPU
What can we do then in these machines?

We need a completely
different machine,
which takes a different
input and a different
output

All operations must act
on all inputs at once!

Marco Rossi
(Openlab-CERN University of Milan) MadFlow Offshell 2021 23/21

Act in parallel: GPU
What can we do then in these machines?

We need a completely
different machine,
which takes a different
input and a different
output

All operations must act
on all inputs at once!

Marco Rossi
(Openlab-CERN University of Milan) MadFlow Offshell 2021 23/21

Act in parallel: GPU
What can we do then in these machines?

We need a completely
different machine,
which takes a different
input and a different
output

All operations must act
on all inputs at once!

So far so good, but how can we do it?

Marco Rossi
(Openlab-CERN University of Milan) MadFlow Offshell 2021 23/21

	Motivation
	Introduction
	How can we do better
	Tensors, tensors everywhere

	The Flow suite: VegasFlow, PDFFlow, and MadFlow
	The what, the where and the how
	PDF interpolation

	Benchmarks and examples
	Automatic cross section integration
	How to

	Conclusions
	The end

