

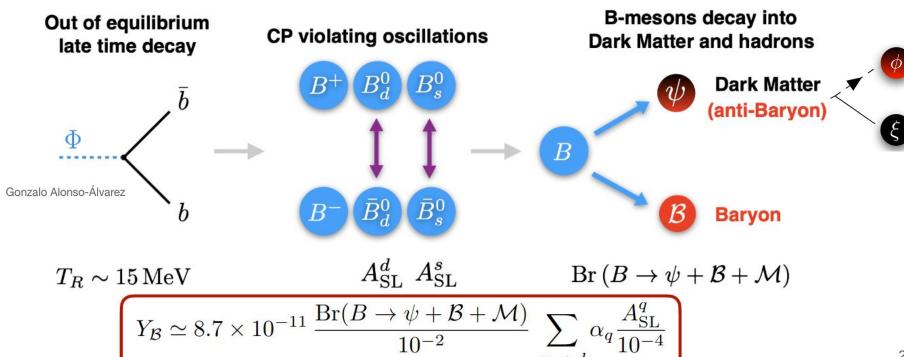
Testing B-mesogenesis at LHCb

Alexandre Brea Rodríguez, Veronika Chobanova¹, Xabier Cid Vidal, Saúl López Soliño, Titus Mombacher, Claire Prouvé, Emilio Xosé Rodríguez Fernández (USC)

> Diego Martínez Santos (GAIN/USC) Carlos Vázquez Sierra (CERN)

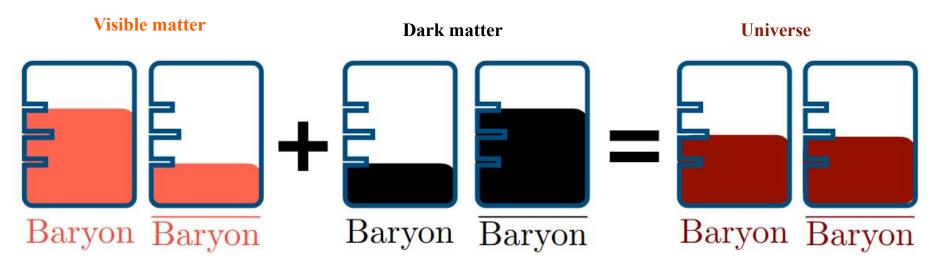
> > [arXiv:2106.12870]

On maternity leave



Introduction

B- mesogenesis: Alonso-Álvarez, Escudero, and Elor [arXiv:2101.02706]

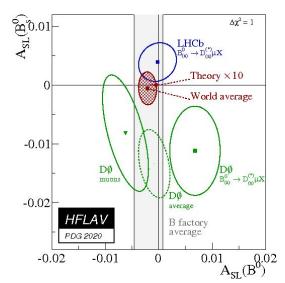


Introduction

Gonzalo Alonso-Álvarez

Similar spirit to Hylogenesis, Davoudiasl et al. [arXiv:1008.2399]

$$Y_{\mathcal{B}} \simeq 8.7 \times 10^{-11} \frac{\text{Br}(B \to \psi + \mathcal{B} + \mathcal{M})}{10^{-2}} \sum_{q=s,d} \alpha_q \frac{A_{\text{SL}}^q}{10^{-4}}$$



At least one of the two $A_{\rm sl}$ needs to be **positive** to produce baryon abundance

Indirect determinations significantly favor a negative value for \mathbf{B}_{d} , and in SM at least a **positive value for B**_s.

Directly measured at LHCb and other experiments

 $\mathbf{B}_{\mathbf{d}}$: $\mathbf{A}_{SL} = -0.0021 \pm 0.0017$

 $B_s: A_{SL} = -0.0006 \pm 0.0028$

At least one of the two $A_{\rm sl}$ needs to be **positive** to produce baryon abundance

Indirect determinations significantly favor a negative value for \mathbf{B}_{d} , and in SM at least a **positive value for B**_s.

Indirect determinations are in principle more precise

$$A_{\rm SL}^d|_{\rm SM} = (-4.7 \pm 0.4) \times 10^{-4}$$

$$A_{\rm SL}^{s}|_{\rm SM} = (2.1 \pm 0.2) \times 10^{-5}$$

Lenz & Tetlalmatzi-Xolocotzi 1912.07621

UTfit
$$A_{SL_d} -0.0033 \pm 0.0014$$
 NP-fit 2018 $A_{SL_s} -0.00013 \pm 0.00051$

 \rightarrow B_s is the likeliest candidate for B-mesogenesis

$$Y_{B} \propto \sum_{s,d} A_{SL}^{s,d} \times \mathcal{B}(B_{s,d}^{0} \to \psi_{DS}X) =$$

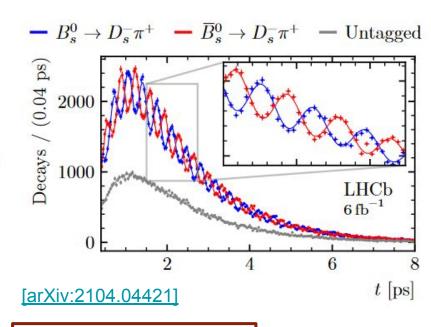
$$- \sum_{s,d} \left| \frac{\Delta \Gamma_{s,d}}{\Delta m_{s,d} \cos(\phi_{s,d} - \arg(\Gamma_{12}^{s,d}))} \right| \sin(\phi_{s,d} - \arg(\Gamma_{12}^{s,d}))$$

$$\times \mathcal{B}(B_{s,d}^{0} \to \psi_{DS}X) ,$$

Calculated in global fits (e.g. UTFit)

Very precise (~ 2 mrad) in SM and models w/o significant BSM contributions to $\Delta F = 1$ penguins

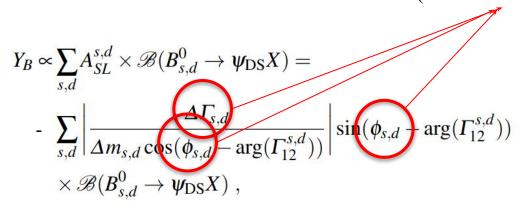
Some theory work needed to compute it in the context of B-mesogenesis (e.g., whether it adds BSM contributions to $\Delta F = 1$ penguins)

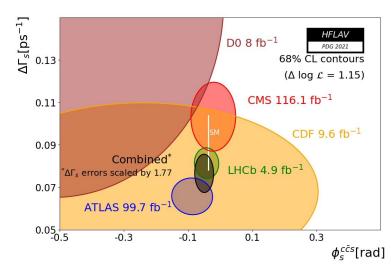


$$Y_{B} \propto \sum_{s,d} A_{SL}^{s,d} \times \mathcal{B}(B_{s,d}^{0} \to \psi_{DS}X) = LHCb$$

$$- \sum_{s,d} \left| \frac{\Delta \Gamma_{s,d}}{\Delta m_{s,d} \cos(\phi_{s,d} - \arg(\Gamma_{12}^{s,d}))} \right| \sin(\phi_{s,d} - \arg(\Gamma_{12}^{s,d}))$$

$$\times \mathcal{B}(B_{s,d}^{0} \to \psi_{DS}X) ,$$


 $\Delta m_s = 17.7656 \pm 0.0057 \text{ ps}^{-1}$

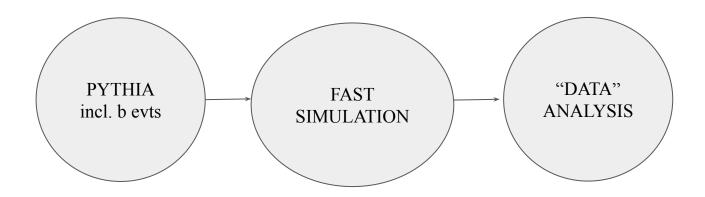


LHCb (& ATLAS/CMS)

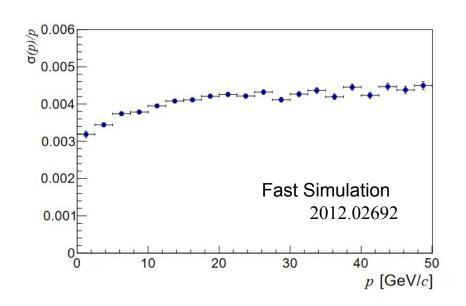
LHCb? \rightarrow this talk

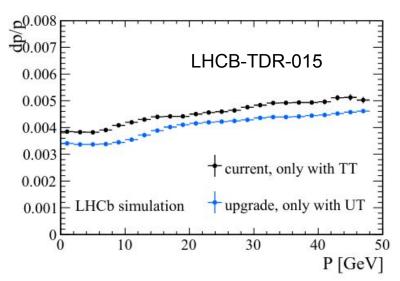
$$Y_{B} \propto \sum_{s,d} A_{SL}^{s,d} \times \mathcal{B}(B_{s,d}^{0} \to \psi_{DS}X) =$$

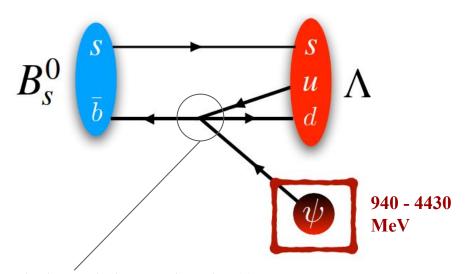
$$- \sum_{s,d} \left| \frac{\Delta \Gamma_{s,d}}{\Delta m_{s,d} \cos(\phi_{s,d} - \arg(\Gamma_{12}^{s,d}))} \right| \sin(\phi_{s,d} - \arg(\Gamma_{12}^{s,d}))$$


$$\mathcal{B}(B_{s,d}^{0} \to \psi_{DS}X)$$

Setup



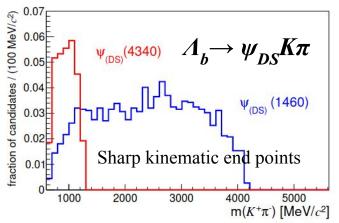


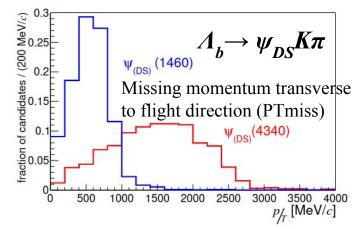

Setup: Fast simulation

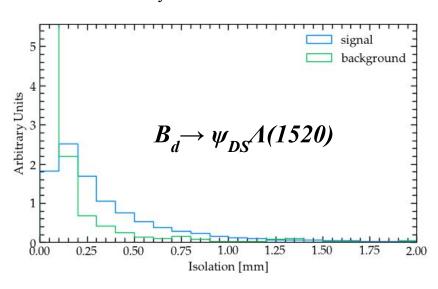
- + Fast simulation of the tracking system, including multiple scattering (V. Chobanova et al. <u>2012.02692</u>)
- + Particle identification from existing plots in LHCb papers/TDR's

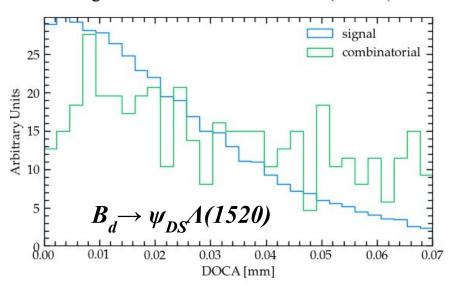
Signatures

The b-quark decays, the other(s) are spectator


→ can be searched using any of the b-hadron species,
no need to restrict to Bs


Inclusive BR's: $\sim 0.1 - 0.001$ Exclusive BR's: $\sim 0.1 - 10^{-6}$





Signatures

No tracks nearby

Daughter tracks close to each other (DOCA)

Decay mode	ε^{REC} %	$\epsilon^{REC\&PT}$	$arepsilon^{SEL/REC}$	$arepsilon^{PID/SEL}$
$\Lambda_h^0 \to \psi_{\rm DS}(940) K^+ \pi^-$	7.6	5.1	13.2	74.2
$\Lambda_b^0 o \psi_{ m DS}(940) \pi^+ \pi^-$	7.3	4.8	14.3	-
$\Lambda_b^{0} \rightarrow \psi_{\rm DS}(1500) K^+ \pi^-$	7.7	4.8	10.8	76.0
$\Lambda_b^0 o \psi_{ m DS}(1500)\pi^+\pi^-$	7.3	4.5	12.5	-
$\Lambda_h^0 o \psi_{ m DS}(2000) K^+ \pi^-$	7.7	4.5	6.67	79.2
$\Lambda_b^0 o \psi_{ m DS}(2000) K^+ \pi^- \ \Lambda_b^0 o \psi_{ m DS}(2000) \pi^+ \pi^- \ \Lambda_b^0 o \psi_{ m DS}(2400) K^+ \pi^- \ \Lambda_b^0 o \psi_{ m DS}(2400) \pi^+ \pi^- \ \Lambda_b^0 o \psi_{ m DS}(2400) \pi^+ \pi^-$	7.4	4.1	10.9	-
$\Lambda_h^0 \to \psi_{\rm DS}(2400) K^+ \pi^-$	7.8	4.1	9.11	80.8
$\Lambda_h^0 o \psi_{ m DS}(2400) \pi^+ \pi^-$	7.4	3.7	8.89	_
$\Lambda_h^0 \to \psi_{\rm DS}(4340) K^+ \pi^-$	8.1	1.2	3.12	88.0
$\Lambda_b^0 o \psi_{ m DS}(4340)\pi^+\pi^-$	7.4	0.97	2.88	-
$\Lambda_b^0 o \psi_{ m DS}(4470) K^+ \pi^-$	8.2	0.91	2.18	87.7
$\Lambda_h^0 \to \psi_{\rm DS}(4470)\pi^+\pi^-$	7.4	0.79	2.23	-
$B^+ \to \psi_{\rm DS}(940) \Lambda_c(2595)^+$	5.7	1.3	20.9	56.7
$B^+ \to \psi_{\rm DS}(1500) \Lambda_c(2595)^+$	5.6	1.1	19.3	56.6
$B^+ \to \psi_{\rm DS}(2000) \Lambda_c(2595)^+$	5.3	0.88	18.5	57.2
$B^+ \to \psi_{\rm DS}(2400) \Lambda_c(2595)^+$	4.9	0.66	16.4	57.1
$B^0 \rightarrow \psi_{\rm DS}(940)\Lambda(1520)$	13.3	12.7	38.1	56.9
$B^0 \rightarrow \psi_{\rm DS}(1500)\Lambda(1520)$	13.7	12.9	36.6	56.4
$B^0 \to \psi_{\rm DS}(2000) \Lambda(1520)$	13.5	12.6	35.5	56.8
$B^0 \to \psi_{\rm DS}(2400)\Lambda(1520)$	13.3	6.8	34.5	56.6
$B^0 \to \psi_{\rm DS}(3500) \Lambda(1520)$	12.1	3.5	23.6	56.5

Used 4 signal decays

$$\Lambda_b \rightarrow \psi_{DS} K \pi$$

$$\Lambda_b \rightarrow \psi_{DS} \pi \pi$$

$$B_d \rightarrow \psi_{DS} \Lambda(1520)$$

$$B_d \rightarrow \psi_{DS} \Lambda(1520)$$

 $B^+ \rightarrow \psi_{DS} \Lambda_c (2595)^+$

Decay mode	ε^{REC} %	$arepsilon^{REC\&PT}$	$arepsilon^{SEL/REC}$	$arepsilon^{PID/SEL}$
$\Lambda_h^0 \to \psi_{\rm DS}(940) K^+ \pi^-$	7.6	5.1	13.2	74.2
$\Lambda_b^0 \to \psi_{\rm DS}(940)\pi^+\pi^- \Lambda_b^0 \to \psi_{\rm DS}(1500)K^+\pi^-$	7.3	4.8	14.3	-
$\Lambda_h^{0} \rightarrow \psi_{\rm DS}(1500) K^+ \pi^-$	7.7	4.8	10.8	76.0
$\Lambda_h^0 o \psi_{ m DS}(1500) \pi^+ \pi^-$	7.3	4.5	12.5	-
$\Lambda_b^0 o \psi_{ m DS}(2000) K^+ \pi^-$	7.7	4.5	6.67	79,2
$\Lambda_b^0 o \psi_{ m DS}(2000) \pi^+ \pi^-$	7.4	4.1	10.9	<i>/</i> -
$\Lambda_b^0 o \psi_{ m DS}(2400) K^+ \pi^-$	7.8	4.1	9.11	80.8
$\Lambda_b^0 o \psi_{ m DS}(2400)\pi^+\pi^-$	7.4	3.7	8.89	_
$\Lambda_b^0 \to \psi_{\rm DS}(4340) K^+ \pi^-$	8.1	1.2	3.12	88.0
$\Lambda_b^{0} ightarrow \psi_{ m DS}(4340) \pi^+ \pi^-$	7.4	0.97	2.88	-
$\Lambda_b^0 o \psi_{ m DS}(4470) K^+ \pi^-$	8.2	0.91	2.18	87.7
$\Lambda_b^0 o \psi_{ m DS}(4470)\pi^+\pi^-$	7.4	0.79	2.23	-
$B^+ \rightarrow \psi_{\rm DS}(940) \Lambda_c(2595)^+$	5.7	1.3	20.9	56.7
$B^+ \to \psi_{\rm DS}(1500) \Lambda_c(2595)^+$	5.6	1.1	19.3	56.6
$B^+ \to \psi_{\rm DS}(2000) \Lambda_c(2595)^+$	5.3	0.88	18.5	57.2
$B^+ \to \psi_{\rm DS}(2400) \Lambda_c(2595)^+$	4.9	0.66	16.4	57.1
$B^0 \to \psi_{\rm DS}(940)\Lambda(1520)$	13.3	12.7	38.1	56.9
$B^0 \rightarrow \psi_{\rm DS}(1500)\Lambda(1520)$	13.7	12.9	36.6	56.4
$B^0 \rightarrow \psi_{\rm DS}(2000)\Lambda(1520)$	13.5	12.6	35.5	56.8
$B^0 \rightarrow \psi_{\rm DS}(2400)\Lambda(1520)$	13.3	6.8	34.5	56.6
$B^0 \to \psi_{\rm DS}(3500)\Lambda(1520)$	12.1	3.5	23.6	56.5

Reconstruction efficiency (including detector acceptance), in %

Decay mode	$\varepsilon^{REC}\%$	$arepsilon^{REC\&PT}$	$oldsymbol{arepsilon}^{SEL/REC}$	$arepsilon^{PID/SEL}$
$\Lambda_b^0 \to \psi_{\rm DS}(940) K^+ \pi^-$	7.6	5.1	13.2	74.2
$\Lambda_b^0 \to \psi_{\rm DS}(940)\pi^+\pi^-$	7.3	4.8	14.3	-
$\Lambda_b^{0} \rightarrow \psi_{\rm DS}(1500) K^+ \pi^-$	7.7	4.8	10.8	76.0
$\Lambda_b^0 o \psi_{ m DS}(1500) \pi^+ \pi^-$	7.3	4.5	12.5	-
$\Lambda_b^0 o \psi_{ m DS}(2000) K^+ \pi^-$	7.7	4.5	6.67	79.2
$egin{align*} \Lambda_b^0 & op \psi_{ m DS}(2000) \pi^+ \pi^- \ \Lambda_b^0 & op \psi_{ m DS}(2400) K^+ \pi^- \ \Lambda_b^0 & op \psi_{ m DS}(2400) \pi^+ \pi^- \ \Lambda_b^0 & op \psi_{ m DS}(2400) \pi^+ \pi^- \ \Lambda_b^0 & op \psi_{ m DS}(4340) K^+ \pi^- \ \Lambda_b^0 & op \psi_{ m DS}(4340) K^+ \pi^- \ \Lambda_b^0 & op \psi_{ m DS}(4470) K^+ \pi^- \ \Lambda_b^0 & op \psi_{ $	7.4	4.1	10.9	_
$\Lambda_b^0 \to \psi_{\rm DS}(2400) K^+ \pi^-$	7.8	4.1	9.11	80.8
$\Lambda_b^0 o \psi_{ m DS}(2400) \pi^+ \pi^-$	7.4	3.7	8.89	<u>_</u> -
$\Lambda_b^0 \to \psi_{\rm DS}(4340) K^+ \pi^-$	8.1	1.2	3.12	88.0
$\Lambda_b^0 o \psi_{ m DS}(4340)\pi^+\pi^-$	7.4	0.97	2.88	-
$\Lambda_b^0 \to \psi_{\rm DS}(4470) K^+ \pi^-$	8.2	0.91	2.18	87.7
$\Lambda_b^0 o \psi_{ m DS}(4470) \pi^+ \pi^-$	7.4	0.79	2.23	-
$B^+ \rightarrow \psi_{\rm DS}(940) \Lambda_c(2595)^+$	5.7	1.3	20.9	56.7
$B^+ \to \psi_{\rm DS}(1500) \Lambda_c(2595)^+$	5.6	1.1	19.3	56.6
$B^+ \to \psi_{\rm DS}(2000) \Lambda_c(2595)^+$	5.3	0.88	18.5	57.2
$B^+ \to \psi_{\rm DS}(2400) \Lambda_c(2595)^+$	4.9	0.66	16.4	57.1
$B^0 \to \psi_{\rm DS}(940)\Lambda(1520)$	13.3	12.7	38.1	56.9
$B^0 \rightarrow \psi_{\rm DS}(1500)\Lambda(1520)$	13.7	12.9	36.6	56.4
$B^0 \to \psi_{\rm DS}(2000) \Lambda(1520)$	13.5	12.6	35.5	56.8
$B^0 \to \psi_{\rm DS}(2400) \Lambda(1520)$	13.3	6.8	34.5	56.6
$B^0 \to \psi_{\rm DS}(3500) \Lambda(1520)$	12.1	3.5	23.6	56.5

Reconstruction efficiency (including detector acceptance), in %,

& 2 tracks with PT > 800 MeV

Decay mode	$\varepsilon^{REC}\%$	$arepsilon^{REC\&PT}$	$oldsymbol{arepsilon}^{SEL/REC}$	$arepsilon^{PID/SEL}$
$\Lambda_h^0 \to \psi_{\rm DS}(940) K^+ \pi^-$	7.6	5.1	13.2	74.2
$\Lambda_b^0 o \psi_{ m DS}(940)\pi^+\pi^-$	7.3	4.8	14.3	-
$\Lambda_h^0 \rightarrow \psi_{\rm DS}(1500) K^+ \pi^-$	7.7	4.8	10.8	76.0
$\Lambda_b^0 o \psi_{ m DS}(1500)\pi^+\pi^-$	7.3	4.5	12.5	-
$\Lambda_b^0 o \psi_{ m DS}(2000) K^+ \pi^-$	7.7	4.5	6.67	79.2
$\Lambda_b^0 o \psi_{ m DS}(2000) \pi^+ \pi^-$	7.4	4.1	10.9	-
$\Lambda^0 \rightarrow W_{DS}(2400)K^+\pi^-$	7.8	4.1	9.11	80.8
$egin{align*} \Lambda_b^0 & ext{ } \psi_{ m DS}(2400)\pi^+\pi^- \ \Lambda_b^0 & ext{ } \psi_{ m DS}(4340)K^+\pi^- \ \Lambda_b^0 & ext{ } \psi_{ m DS}(4340)\pi^+\pi^- \ \Lambda_b^0 & ext{ } \psi_{ m DS}(4470)K^+\pi^- \ \end{pmatrix}$	7.4	3.7	8.89	
$\Lambda_b^0 \to \psi_{\rm DS}(4340) K^+ \pi^-$	8.1	1.2	3.12	88.0
$\Lambda_b^0 o \psi_{ m DS}(4340)\pi^+\pi^-$	7.4	0.97	2.88	-
$\Lambda_b^0 \to \psi_{\rm DS}(4470) K^+ \pi^-$	8.2 /	0.91	2.18	87.7
$\Lambda_b^0 o \psi_{ m DS}(4470) \pi^+ \pi^-$	7.4	0.79	2.23	-
$B^+ \to \psi_{\rm DS}(940) \Lambda_c(2595)^+$	5.7	1.3	20.9	56.7
$B^+ \to \psi_{\rm DS}(1500) \Lambda_c(2595)^+$	5.6	1.1	/ 19.3	56.6
$B^+ \to \psi_{\rm DS}(2000) \Lambda_c(2595)^+$	5.3	0.88	/ 18.5	57.2
$B^+ \to \psi_{\rm DS}(2400) \Lambda_c(2595)^+$	4.9	0.66	16.4	57.1
$B^0 \rightarrow \psi_{\rm DS}(940)\Lambda(1520)$	13.3	12.7	38.1	56.9
$B^0 \to \psi_{\rm DS}(1500) \Lambda(1520)$	13.7	12.9	36.6	56.4
$B^0 \to \psi_{\rm DS}(2000) \Lambda(1520)$	13.5	12.6	35.5	56.8
$B^0 \rightarrow \psi_{\rm DS}(2400)\Lambda(1520)$	13.3	6.8	34.5	56.6
$B^0 \to \psi_{\rm DS}(3500)\Lambda(1520)$	12.1	3.5	23.6	56.5

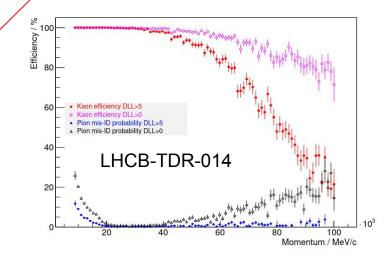
Reconstruction efficiency (including detector acceptance), in %,

& 2 tracks with PT > 800 MeV

Decay mode	$arepsilon^{REC}\%$	$\epsilon^{REC\&PT}$	$arepsilon^{SEL/REC}$	$arepsilon^{PID/SEL}$	
$\Lambda_b^0 \to \psi_{ m DS}(940) K^+ \pi^-$	7.6	5.1	13.2	74.2	
$\Lambda_b^0 o \psi_{ m DS}(940)\pi^+\pi^-$	7.3	4.8	14.3	-	
$\Lambda_h^{0} \rightarrow \psi_{\rm DS}(1500) K^+ \pi^-$	7.7	4.8	10.8	76.0	
$\Lambda_b^0 o \psi_{ m DS}(1500)\pi^+\pi^-$	7.3	4.5	12.5	-	
$\Lambda_h^0 \to \psi_{\rm DS}(2000) K^+ \pi^-$	7.7	4.5	6.67	79.2	
$\Lambda_h^0 o \psi_{ m DS}(2000) \pi^+ \pi^-$	7.4	4.1	10.9	-	
$egin{aligned} m{\Lambda}_{b}^{0} & ightarrow m{\psi}_{ m DS}(2000) K^{+} m{\pi}^{-} \ m{\Lambda}_{b}^{0} & ightarrow m{\psi}_{ m DS}(2000) m{\pi}^{+} m{\pi}^{-} \ m{\Lambda}_{b}^{0} & ightarrow m{\psi}_{ m DS}(2400) K^{+} m{\pi}^{-} \end{aligned}$	7.8	4.1	9.11	80.8	
$\Lambda_b^0 o \psi_{ m DS}(2400)\pi^+\pi^-$	7.4	3.7	8.89		/
$\Lambda_b^0 o \psi_{ m DS}(4340) K^+ \pi^-$	8.1	1.2	3.12	88.0	
$\Lambda_b^0 \to \psi_{\rm DS}(4340)\pi^+\pi^-$	7.4	0.97	2.88	-	
$\Lambda_h^0 \to \psi_{\rm DS}(4470) K^+ \pi^-$	8.2	0.91	2.18	87.7	
$\Lambda_b^0 o \psi_{ m DS}(4470)\pi^+\pi^-$	7.4	0.79	2.23	-	
$B^+ \rightarrow \psi_{\rm DS}(940) \Lambda_c(2595)^+$	5.7	1.3	20.9	56.7	
$B^+ \to \psi_{\rm DS}(1500) \Lambda_c(2595)^+$	5.6	1.1	19.3	56.6	
$B^+ \to \psi_{\rm DS}(2000) \Lambda_c(2595)^+$	5.3	0.88	18.5	57.2	
$B^+ o \psi_{ m DS}(2400) \Lambda_c(2595)^+$	4.9	0.66	16.4	57.1	
$B^0 \rightarrow \psi_{\rm DS}(940)\Lambda(1520)$	13.3	12.7	38.1	56.9	
$B^0 \to \psi_{\rm DS}(1500) \Lambda(1520)$	13.7	12.9	36.6	56.4	
$B^0 \rightarrow \psi_{\rm DS}(2000)\Lambda(1520)$	13.5	12.6	35.5	56.8	
$B^0 \rightarrow \psi_{\rm DS}(2400)\Lambda(1520)$	13.3	6.8	34.5	56.6	
$B^0 \to \psi_{\rm DS}(3500)\Lambda(1520)$	12.1	3.5	23.6	56.5	

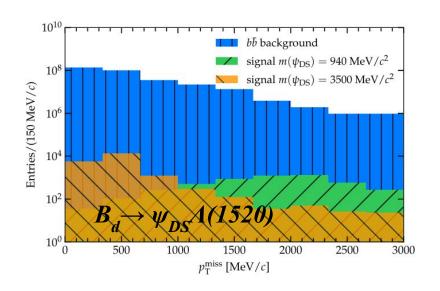
Selection efficiency for those reconstructed events.
Selection includes PT cuts, vertex quality, isolation...

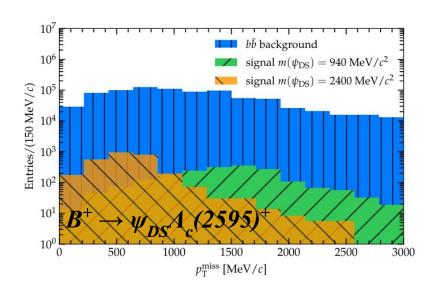
Not yet PT miss or invariant mass



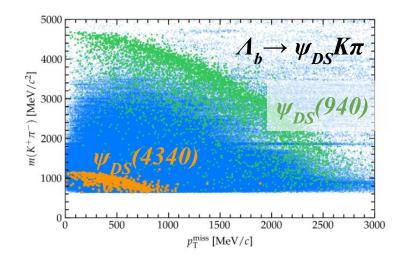
				1
$\varepsilon^{REC}\%$	$\epsilon^{REC\&PT}$	$arepsilon^{SEL/REC}$	$arepsilon^{PID/SEL}$	
7.6	5.1	13.2	74.2	
7.3	4.8	14.3	-	
7.7	4.8	10.8	76.0	
7.3	4.5	12.5	-	
7.7	4.5	6.67	79.2	
7.4	4.1	10.9	-	
7.8	4.1	9.11	80.8	
7.4	3.7	8.89	-	
8.1	1.2	3.12	88.0	
7.4	0.97	2.88	-	l
8.2	0.91	2.18	87.7	
7.4	0.79	2.23	=	
5.7	1.3	20.9	56.7	
5.6	1.1	19.3	56.6	
5.3	0.88	18.5	57.2	
4.9	0.66	16.4	57.1	
13.3	12.7	38.1	56.9	
13.7	12.9	36.6	56.4	
13.5	12.6	35.5	56.8	
13.3	6.8	34.5	56.6	
12.1	3.5	23.6	56.5	L
	7.6 7.3 7.7 7.3 7.7 7.4 7.8 7.4 8.1 7.4 8.2 7.4 5.7 5.6 5.3 4.9 13.3 13.7 13.5 13.3	7.6 5.1 7.3 4.8 7.7 4.8 7.3 4.5 7.7 4.5 7.4 4.1 7.8 4.1 7.4 3.7 8.1 1.2 7.4 0.97 8.2 0.91 7.4 0.79 5.7 1.3 5.6 1.1 5.3 0.88 4.9 0.66 13.3 12.7 13.7 12.9 13.5 12.6 13.3 6.8	7.6 5.1 13.2 7.3 4.8 14.3 7.7 4.8 10.8 7.3 4.5 12.5 7.7 4.5 6.67 7.4 4.1 10.9 7.8 4.1 9.11 7.4 3.7 8.89 8.1 1.2 3.12 7.4 0.97 2.88 8.2 0.91 2.18 7.4 0.79 2.23 5.7 1.3 20.9 5.6 1.1 19.3 5.3 0.88 18.5 4.9 0.66 16.4 13.3 12.7 38.1 13.7 12.9 36.6 13.5 12.6 35.5 13.3 6.8 34.5	7.6 5.1 13.2 74.2 7.3 4.8 14.3 - 7.7 4.8 10.8 76.0 7.3 4.5 12.5 - 7.7 4.5 6.67 79.2 7.4 4.1 10.9 - 7.8 4.1 9.11 80.8 7.4 3.7 8.89 - 8.1 1.2 3.12 88.0 7.4 0.97 2.88 - 8.2 0.91 2.18 87.7 7.4 0.79 2.23 - 5.7 1.3 20.9 56.7 5.6 1.1 19.3 56.6 5.3 0.88 18.5 57.2 4.9 0.66 16.4 57.1 13.3 12.7 38.1 56.9 13.7 12.9 36.6 56.4 13.5 12.6 35.5 56.8 13.3 6.8 34.5 56.6

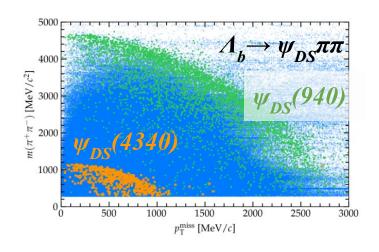
Particle Identification efficiency for selected events (Separation of Kaon/proton vs pion)



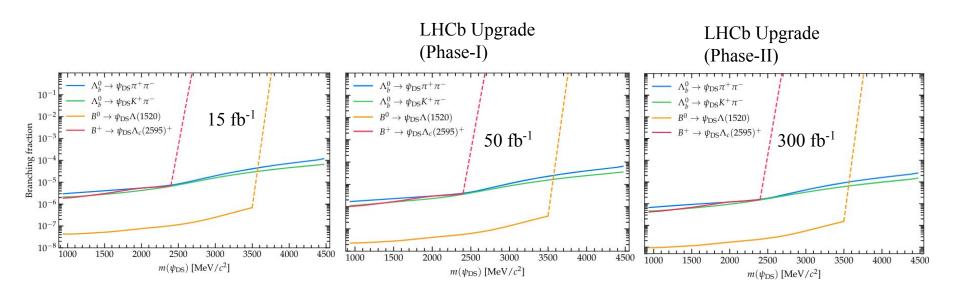


$B_d \rightarrow \psi_{DS} \Lambda(1520)$, $B^+ \rightarrow \psi_{DS} \Lambda_c(2595)^+$

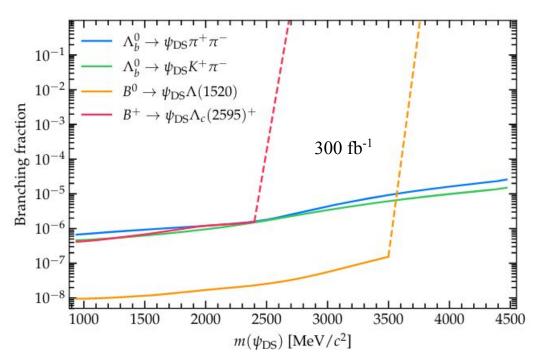

→ Search for signal in bins of PTmiss assuming BKG level is known



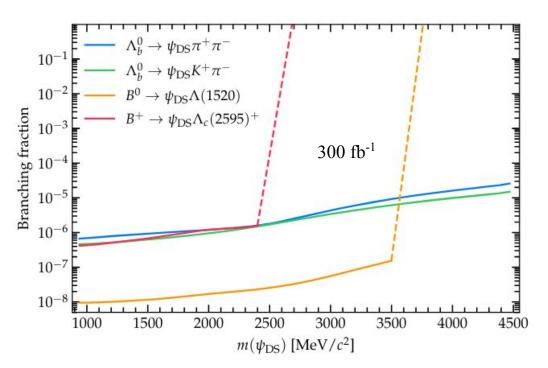
$\Lambda_b \rightarrow \psi_{DS} K\pi, \Lambda_b \rightarrow \psi_{DS} \pi\pi$


- \rightarrow MVA combining M(h,h) & PTmiss
- → Optimize cut and search for signal assuming BKG level is known

Sensitivity



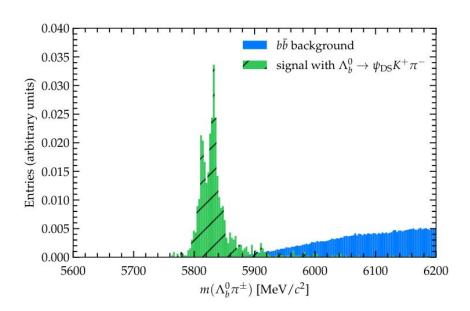
Sensitivity

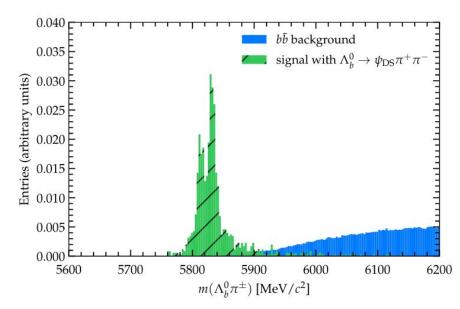

- \rightarrow Signals are cleaner at low masses of the ψ_{DS} for the same BR \rightarrow stronger BR limits at low masses
- \rightarrow On the other hand, if ψ_{DS} is heavy, the exclusive BR's are higher \rightarrow no need to go to so low BR to probe the theory
- \rightarrow In terms of sample size, LHCb Upgrade can probe all allowed mass range for ψ_{DS}

Comment on systematics

A crucial difference w.r.t other searches os the extremely high background level

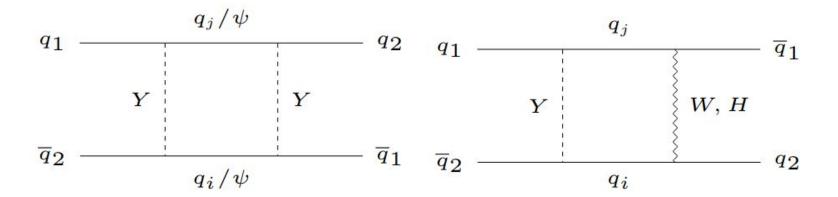
- → Even with small (per mil) systematics the measurement would be systematically limited after 10 fb⁻¹
- \rightarrow In terms of sample size, LHCb Upgrade can probe all allowed mass range for ψ_{DS}
- \rightarrow LHCb Upgrade needs very precise bkg systematic (and/or stronger bkg suppression) to probe all allowed mass range for ψ_{DS}

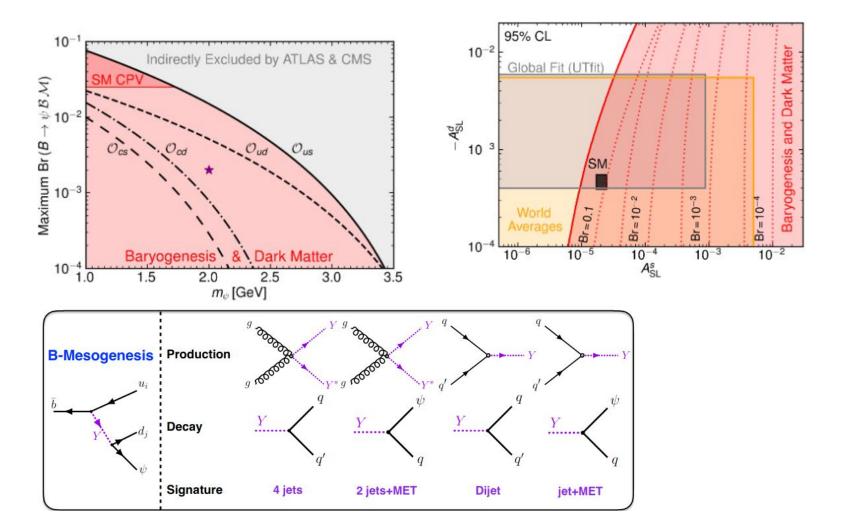




Use of mother resonance?

Further bkg suppression (as well as a clean signal peak confirmation) can be achieved by identifying the mother of the decaying b-hadron (e.g., $\Sigma_b^+ \to \Lambda_b \pi^+$) (see Zhang&Stone, 1402.4205)





Conclusions

- B-mesogenesis is an elegant solution that solves the baryon asymmetry problem by eliminating the baryon asymmetry
- It can be accurately tested by precise measurements of $B_{s(d)}$ oscillation parameters and searches for b decays to invisible + X
- LHCb can search for those BSM decays with excellent **statistical** accuracy
- Though systematics from background modelling could be a limiting factor
- Further bkg suppression (as well as a clean signal peak confirmation) can be achieved by identifying the mother of the decaying b-handron (eg, $\Sigma_h^+ \to \Lambda_h^- \pi^+$)
- LHCb has the **potential** to test the entire parameter space of the model

Backup

