
Towards Observing
W_L[±]W_L [±] → W_L[±]W_L [±]
at the LHC
(using hadronic decays)

Karolos Potamianos

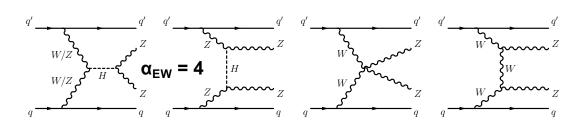
July 6, 2021

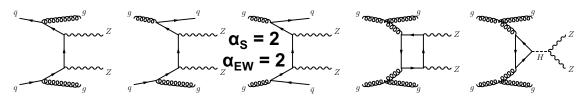
Probing VBS :: Motivation

- Important tests of Electroweak and Strong interaction
- They directly probe EW boson self-interactions
- They are a portal to
 - Understanding Electroweak Symmetry Breaking
 - Probing BSM physics

Measurements at the LHC:

- Fiducial and differential cross-sections
- Looking for anomalous couplings (EFT)
- Probing EW boson polarisation

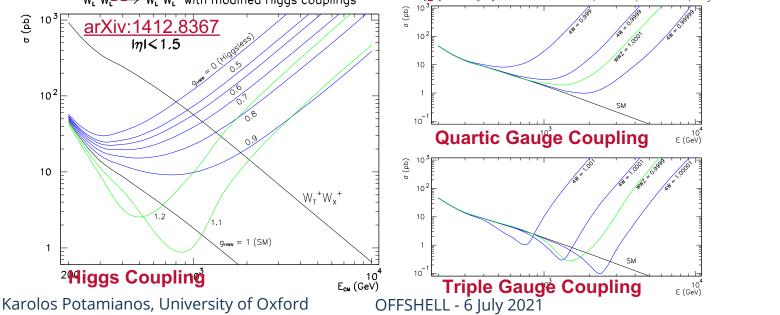

Probing VBS :: What we measure


Cannot directly measure VBF/VBS

- Significant interference with other diagrams with same order in
- Extracting VBS component is not gauge invariant
- We can only measure electroweak production of VVjj (VBS)
- Moreover, QCD/strong production is much larger than EW (excl. W±W±jj)

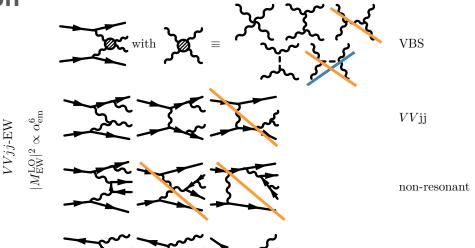
EW

QCD


Probing Electroweak Symmetry Breaking

- VBS at high energy subject to delicate cancellation between terms
 - ∘ $\sigma(W_LW_L \rightarrow W_LW_L)$ grows with energy w/o Higgs boson
 - Very sensitive to shifts in the trilinear or quartic gauge coupling

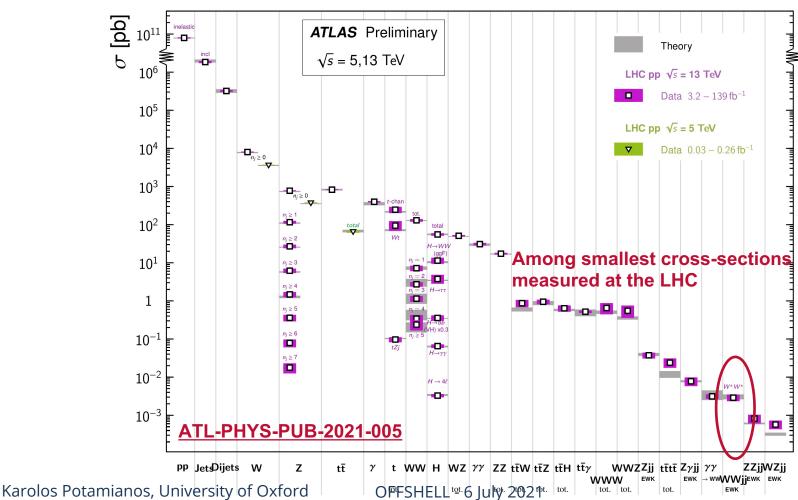
• V(V)jj is a fundamendal probe of SU(2) xU(1)_Y


V(V)jj is a fundamendal probe of SU(2) xU(1)_Y

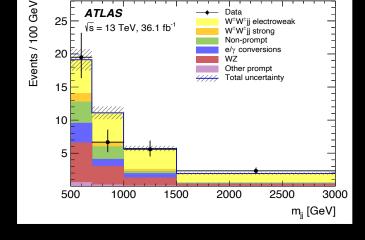
Advantages of probing W±W±jj

• When VV = W $^{\pm}$ W, some production modes are forbidden, yielding a large σ_{EW}/σ_{QCD} ratio

 Same-charge requirement helps reducing backgrounds (e.g. tt)



 $VV(V \rightarrow jj)$


How does VBS look like?

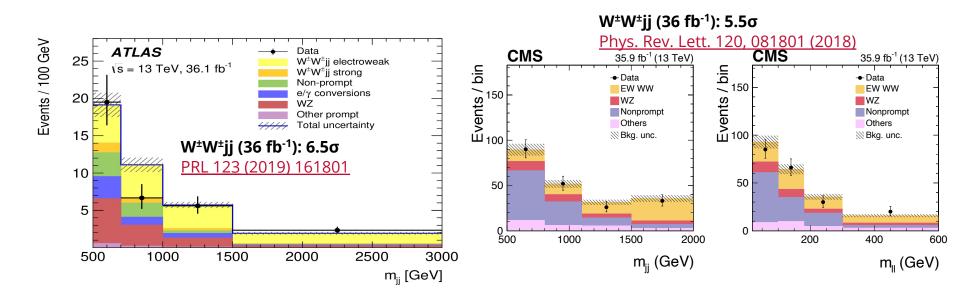
Two charged leptons (e and µ) from central W → Iv

Energy imbalarice (v)

Two forward particle "jets"

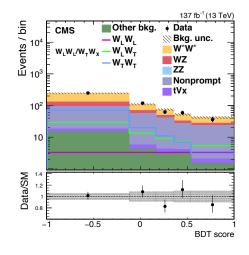
Run: 302956

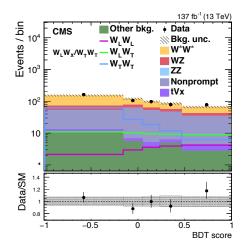
Event: 1297610851 2016-06-29 09:25:24 CEST


 $m_{ij} = 3.8 \text{ TeV}$

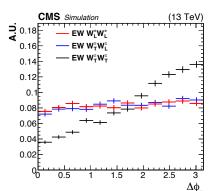
7

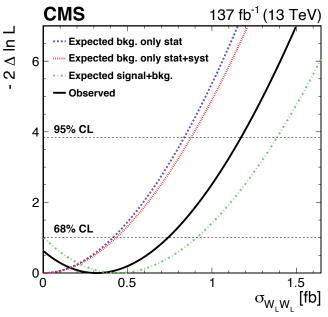
Status of W[±]W[±]jj at the LHC




Observed using 36 fb-1 of LHC data by both ATLAS and CMS

Status of W_L[±]W_L[±]jj at the LHC



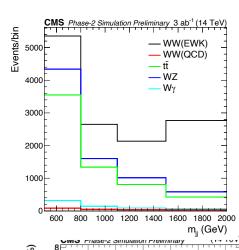


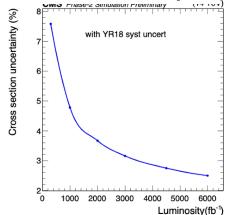
W[±]W[±] centre-of-mass frame

$\sigma \mathcal{B}$ (fb)	Theoretical prediction (fb)
$0.32^{+0.42}_{-0.40}$	0.44 ± 0.05
$3.06_{-0.48}^{+0.51}$	3.13 ± 0.35
$1.20^{+0.56}_{-0.53}$	1.63 ± 0.18
$2.11^{+0.49}_{-0.47}$	1.94 ± 0.21
	$0.32_{-0.40}^{+0.42} \\ 3.06_{-0.48}^{+0.51}$

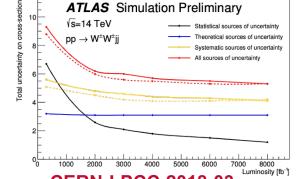
Phys. Lett. B 812 (2020) 136018

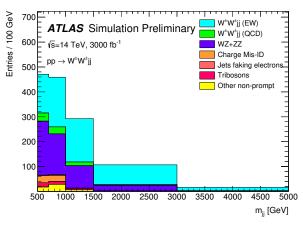
Projections for the HL-LHC


- Large pool of events
- Expecting few percent precision on σ(pp→W[±] W[±]jj)

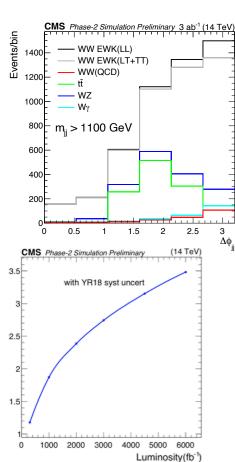

CMS

Process	Expected yield, $\mathcal{L} = 3000 \text{fb}^{-1}$
$W^{\pm}W^{\pm}$ (QCD)	196
$ t\bar{t} $	5515
WZ	1421
$W\gamma$	406
Total Background	7538
Signal $W^{\pm}W^{\pm}$ (EW)	5368

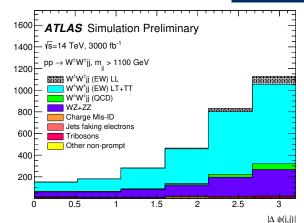

ATLAS

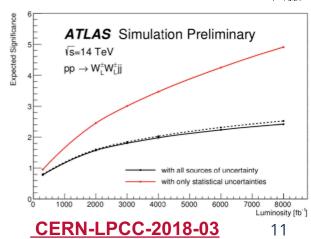

/ \ I L/ \O					
Process	All channels	$\mu^{\pm}\mu^{\pm}$	$e^{\pm}e^{\pm}$	$\mu^{\pm}e^{\pm}$	$e^{\pm}\mu^{\pm}$
$W^{\pm}W^{\pm}jj(QCD)$	168.7	74.6	19.7	32.2	42.2
Charge Misidentification	200	0.0	11	30	160
Jets faking electrons	460	0.0	130	260	70
WZ + ZZ	1286	322	289	271	404
Tribosons	76	30.1	9.6	15.1	21.6
Other non-prompt	120	29	16.6	50	19
Total Background	2310	455	480	660	710
Signal $W^{\pm}W^{\pm}jj(EW)$	2958	1228	380	589	761

OFFSHELL - 6 July 2021



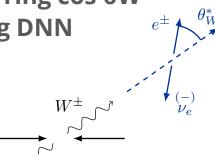
Karolos Potamianos, University of Oxford

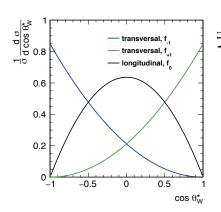

Projections for the HL-LHC for W_L±W_L±jj



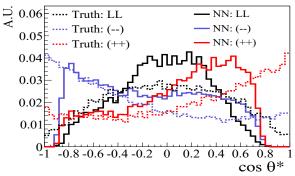
- Longitudinal polarisation can be probed at HL-LHC
- ~3σ per experiment using leptonic decays (e, μ) and assuming limited analysis improvements
- Unfortunately, that's not enough

OFFSHELL - 6 July 2021

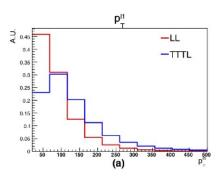


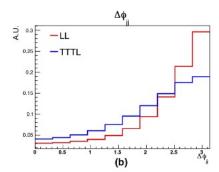


Improvements in the leptonic channel

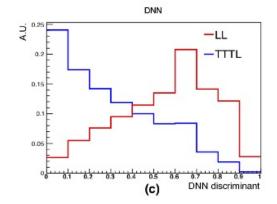


Inferring cos θW* using DNN



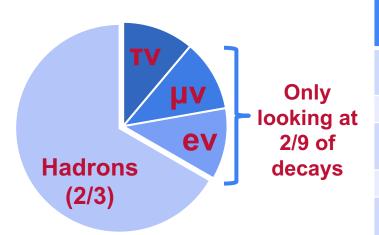


Phys. Rev. D 93, 094033 (2016)



Separating LL from TT, TL/LT using kinematic properties

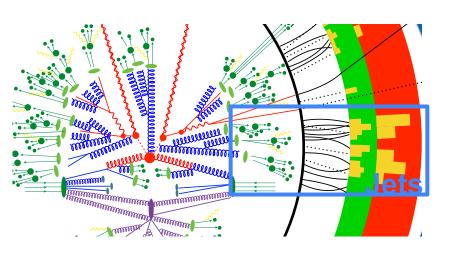
Phys. Rev. D 99, 033004 (2019)



W±W±jj at the (HL-)LHC :: Opportunities

- Untapped potential: not leveraging hadronic decays of the W bosons
 - Access to **full event kinematics** (no neutrinos) to **extract W boson polarisation**
 - Usually used in BSM searches, but have also benefit for SM processes
- Increased luminosity provides large event pool

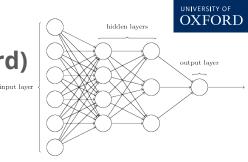
W Decay Fractions

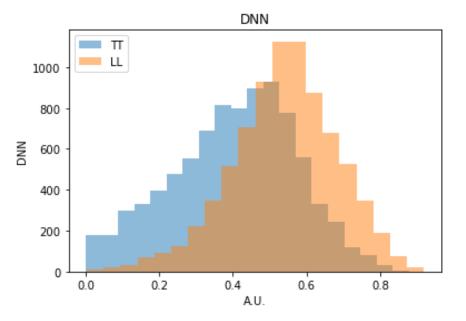


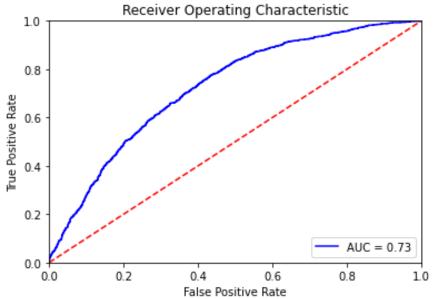
EW W [±] W [±] jj event yields	ATLAS Run-2 (2014- 2018)	Run-3 (2021- 2024*)	HL-LHC	
Integrated Luminosity	140 fb ⁻¹	250-300 fb ⁻¹	2500-3000 fb ⁻¹	
Leptonic (I = e, μ)	232	420-500	4200-5000	
Longitudinal (V _L V _L) (leptonic)	16	30-35	300-350	
Hadronic (ϵ_{HAD} = 10% ϵ_{LEP})	348	630-750	6300-7500	
$V_L V_L$ (hadronic, $\varepsilon_{HAD} = 10\%$ ε_{LEP})	24	44-52	440-520	

Challenges in probing VBS at HL-LHC

- Pile-up increase from 50 to 200 means challenge to maintain or improve signal acceptance
- Needs better pile-up mitigation, jet resolution and quark-gluon jet separation

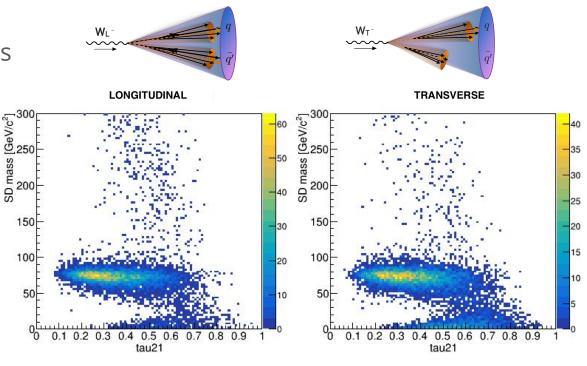



Challenges


- Jets are very complex: detailed jet substructure studies and deep learning required to extract W boson charge and polarization
- Huge backgrounds from QCD processes: need quark-gluon jet discrimination, and use event properties (e.g., color flow)
- Techniques to be used to improve measurements of other processes involving W bosons

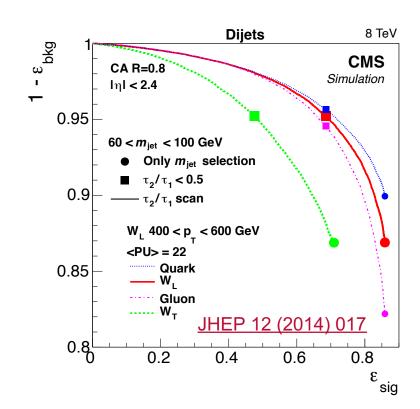
Event-based DNN

- MG3.1 + Herwig (Dipole Shower) + Delphes (HL-LHC card)
- Does not take pile-up into account
- Using only jet {pT, Eta, Phi, Area} :: Good but not enough



Differentiating W_L from W_T

 Jet substructure can be used to study the hardonic W decays <u>VBSCAN-PUB-04-21</u> <u>CERN-STUDENTS-Note- 2018-220 (2018)</u>


 However, grooming reduces the detection efficiency of hadronic W_T decays (yiels more often 1-prong)

W Tagging Techniques

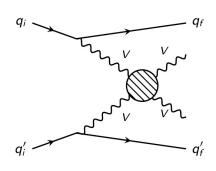
UNIVERSITY OF OXFORD

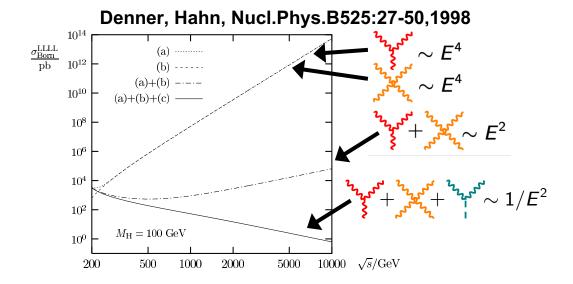
- Jet substructure algorithms can be used to identify W_L, but more work is needed to improve the efficiency for W_T (to measure all polarisation components)
- Promising avenues include particlebased Deep/Graph Neural Networks (e.g., <u>JEDI-net</u>, or <u>ParticleNet</u>)

The Start of a Long Journey

- W±W±jj observed during Run-2 Learned to model signal and bkg., increasing presicion [O(10%)]
- Run-3 will yield additional data (x2-3)
- Will it be enough to observe W_L[±]W_L[±]jj?
- Need to use ALL data (incl. semi-leptonic and hadronic)
- HL-LHC will again increase data (x10)
- Allow measuring W±W±jj and W_L±W_L±jj to high precision

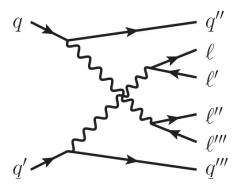
Meanwhile, we have to get ready for the challenge and prepare new techniques to get the most out of our data.

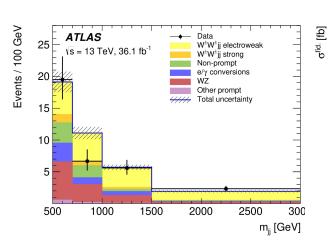


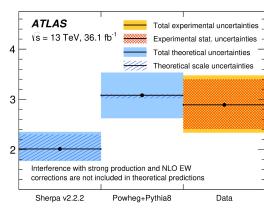

Stay tuned on this exciting area!

ADDITIONAL MATERIAL

Unraveling Electroweak Symmetry Breaking

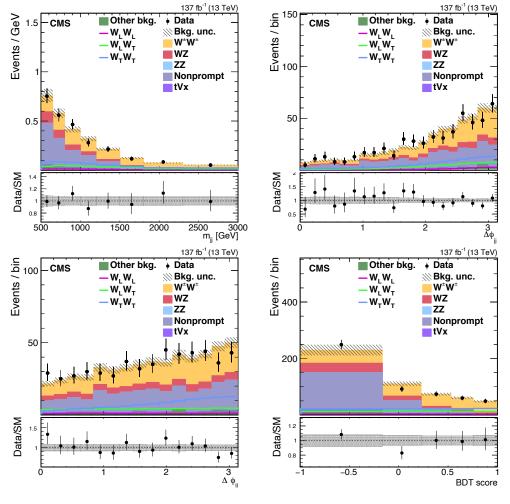



EW W±W±ii Production


W[±]W[±]jj (36 fb⁻¹): 6.5σ PRL 123 (2019) 161801

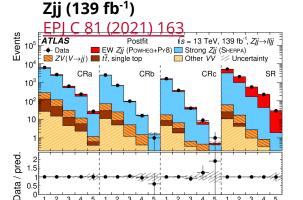
Source	Impact [%]
Experimental	
Electrons	0.6
Muons	1.3
Jets and $E_{\rm T}^{\rm miss}$	3.2
b-tagging	2.1
Pileup	1.6
Background, statistical	3.2
Background, misid. leptons	3.3
Background, charge misrec.	0.3
Background, other	1.8
Theory modeling	
$W^{\pm}W^{\pm}jj$ electroweak-strong interference	1.0
$W^{\pm}W^{\pm}jj$ electroweak, EW corrections	1.4
$W^{\pm}W^{\pm}jj$ electroweak, shower, scale, PDF & α_s	2.8
$W^{\pm}W^{\pm}jj$ strong	2.9
WZ	3.3
Luminosity	2.4

Observation using 36 fb⁻¹

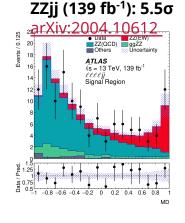

e^+e^+	e^-e^-	$e^+\mu^+$	$e^-\mu^-$	$\mu^+\mu^+$	$\mu^-\mu^-$	Combined
1.48 ± 0.32	1.09 ± 0.27	11.6 ± 1.9	7.9 ± 1.4	5.0 ± 0.7	3.4 ± 0.6	30 ± 4
2.2 ± 1.1	1.2 ± 0.6	5.9 ± 2.5	4.7 ± 1.6	0.56 ± 0.05	0.68 ± 0.13	15 ± 5
1.6 ± 0.4	1.6 ± 0.4	6.3 ± 1.6	4.3 ± 1.1	_	_	13.9 ± 2.9
0.16 ± 0.04	0.14 ± 0.04	0.90 ± 0.20	0.63 ± 0.14	0.39 ± 0.09	0.22 ± 0.05	2.4 ± 0.5
0.35 ± 0.13	0.15 ± 0.05	$2.9 ~\pm~ 1.0$	$1.2 ~\pm~ 0.4$	$1.8~\pm~0.6$	0.76 ± 0.25	$7.2 ~\pm~ 2.3$
5.8 ± 1.4	4.1 ± 1.1	28 ± 4	18.8 ± 2.6	7.7 ± 0.9	5.1 ± 0.6	69 ± 7
5.6 ± 1.0	$2.2 ~\pm~ 0.4$	24 ± 5	9.4 ± 1.8	$13.4~\pm~2.5$	5.1 ± 1.0	60 ± 11
10	4	44	28	25	11	122
	$\begin{array}{c} 1.48 \pm \ 0.32 \\ 2.2 \ \pm \ 1.1 \\ 1.6 \ \pm \ 0.4 \\ 0.16 \pm \ 0.04 \\ 0.35 \pm \ 0.13 \\ \hline 5.8 \ \pm \ 1.4 \\ \hline \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

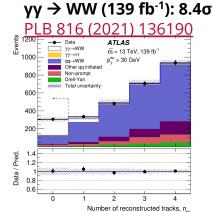
$$\sigma^{\text{fid.}} = 2.89^{+0.51}_{-0.48} \text{ (stat.)} ^{+0.24}_{-0.22} \text{ (exp. syst.)} ^{+0.14}_{-0.16} \text{ (mod. syst.)} ^{+0.08}_{-0.06} \text{ (lumi.)} \text{ fb}$$

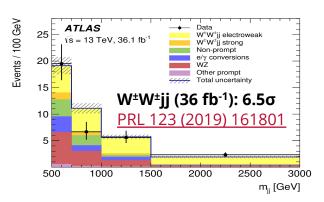
Process	Yields in W [±] W [±] SR	Source of uncertainty	$W_{\rm L}^{\pm}W_{\rm L}^{\pm}$ (%)	$W_{X}^{\pm}W_{T}^{\pm}$ (%)	$W_{\rm L}^{\pm}W_{X}^{\pm}$ (%)	$W_{\rm T}^{\pm}W_{\rm T}^{\pm}$ (%)
$W_{r}^{\pm}W_{r}^{\pm}$	16.0 ± 18.3	Integrated luminosity	3.2	1.8	1.9	1.8
$W_{\mathrm{T}}^{\stackrel{\perp}{\underline{T}}}W_{\mathrm{T}}^{\stackrel{\perp}{\underline{T}}}$	63.1 ± 10.7	Lepton measurement	3.6	1.9	2.5	1.8
$W_{\mathrm{T}}^{\pm}W_{\mathrm{T}}^{\pm}$	110.1 ± 18.1	Jet energy scale and resolution	11	2.9	2.5	1.1
$QCDW^{\pm}W^{\pm}$	13.8 ± 1.6	Pileup	0.9	0.1	1.0	0.3
Interference W [±] W [±]	8.4 ± 0.6	b tagging	1.1	1.2	1.4	1.1
WZ	63.3 ± 7.8	Nonprompt lepton rate	17	2.7	9.3	1.6
ZZ	0.7 ± 0.2	Trigger	1.9	1.1	1.6	0.9
Nonprompt	213.7 ± 52.3	Limited sample size	38	3.9	14	5.7
tVx	7.1 ± 2.2	Theory	6.8	2.3	4.0	2.3
Other background	26.9 ± 9.9	Total systematic uncertainty	44	6.6	18	7.0
Total SM	522.9 ± 60.7	Statistical uncertainty	123	15	42	22
Data	524	Total uncertainty	130	16	46	23

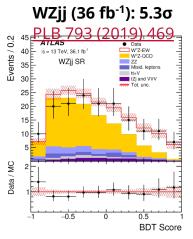


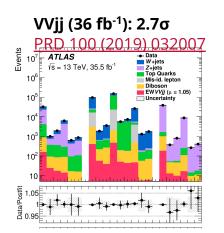
OFFSHELL - 6 July 2021


Phys. Lett. B 812 (2020) 136018


Overview of Run-2 ATLAS VBS/VBF Analyses






 m_{ii} bin

