
Abstract: We present a novel implementation of classification using boosted decision trees (BDT) on field programmable gate arrays 
(FPGA). Two example problems are presented, in the binary classification of electrons vs. photons and in the selection of vector boson 
fusion-produced Higgs bosons vs. the rejection of the multijet processes. The firmware implementation of binary classification 
requiring 100 training trees with a maximum depth of 4 using four input variables gives a latency value of about 10ns. Implementations 
of machine learning algorithms such as BDT will enable the level-1 trigger systems of the Run 4 LHC to be more sensitive to new 
physics. The work is described in [2104.03408].
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Introduction

• ATLAS and CMS have FPGA based L1 trigger systems 

reduce rate: 40MHz → 100 kHz, latency of µs [1,2] 

• Lots of effort to evolve “simple” algorithms, e.g., di-jet 

mass to ML algorithms: BDT, NN [3,4] 

• fwX: implement a new set of ML tools to prepare a BDT 

for firmware implementation 

• The fwX workflow shown in Fig. 1 starts by training a 

BDT using software, such as TMVA
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Firmware optimization

• Fixed bit precision is used to represent input variables 

• The tree is first “flattened” as shown in Fig. 2

• Bin engines are used to identify the appropriate weight 

• BSBE: Bin engine by bit shift, LUBE: Bin engine by look-up table 

Resource utilization 

• Evaluate resource cost vs: Nvar, tree depth, bin engine, and Nbits


• Problem: e/𝛾 separation, using public dataset provided in [5] 

• Latency: as low as 10ns 

• Resource (LUT, FF, DSP, BRAM) costs can be a few % and scale with 

the number of bins in the BDT as shown in Fig. 3 & 4

Dataset & training

• Goal: VBF Higgs vs. multi-jet bkg

• Signal: VBF H→inv. (POWHEG)

• Background: Multijet (Pythia) 

• Test: VBF H→aa→4b

• Detector smearing  & pileup done 

using DELPHES [6], with µ = 50.  

Figure 1: The work flow for training a BDT using external 
software, which is then passed to the nanosecond optimization 
component of fwX in preparation for firmware implementation  

Fig 2

Fig 4

Fig 3

0 0.2 0.4 0.6 0.8 1 1.2

O, BDT output score

0

0.1

0.2

E
ve

n
ts

 (
u

n
it 

n
o

rm
.)

Test samples

 Multijet

 inv.→ VBF H

 4b→ VBF H

Notes

 Trained vs.

 inv.→ VBF H

 for all curves

Fig 5

VBF Higgs trigger: a sample physics case 

Fig 6
Fig 5: input variables for BDT 

Fig 6: BDT distribution for signal and 
background. Test sample with hadronic 
b-jets shows that the training is robust 
for a variety of Higgs decay modes 

Results 

• Table 1: after optimization of BDT, few % cost and latency 

• BDT can improve cut based performance by 2x (Fig. 7)

• Equivalent performance for firmware vs. software BDT (Fig. 7) 

Table 1

Fig 7
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