Development of Advanced Superconducting Accelerator Magnets for the LHC Luminosity Upgrade

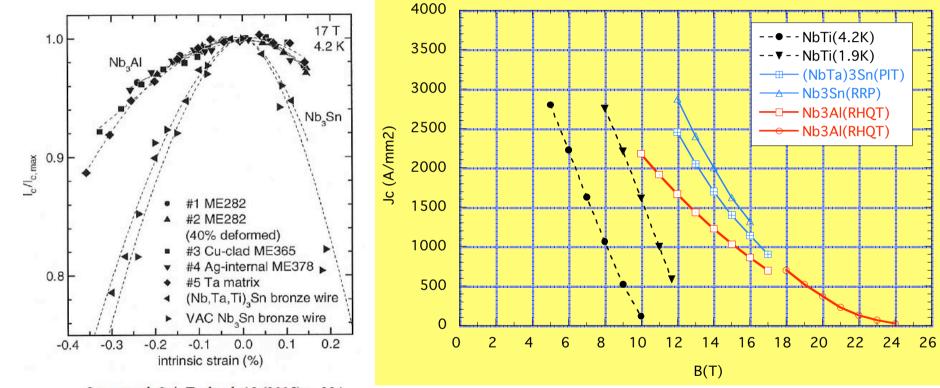
Phase 1: Superconductor Development

Akira Yamamoto (KEK)

Prepared for the 1st CERN-KEK Cooperation Committee to be held at CERN, Dec., 8, 2006

Outline

- Objective
- Status of the development
- Global Cooperation Net-work proposed
- Plan for Further Development
- Summary


Objective for Phase I

- Develop:
 - High-field superconductor and cable for
 - Advanced Superconducting Magnets for the LHC luminosity Upgrade,
- Evaluate:
 - Performance the cable by using model coils at
 - field range $\geq \sim 15$ Tesla

Specific Development

- Superconductor (strand) with
 - Nb3Al superconductor
 - Non-Cu Jc to reach ~ 1,500 A/mm² at 15 T
 - Mechanical stability with keeping Jc
 - Cu-stabilizer mechanically stable enough,
 - Magnetization small enough, at low field
- Cable
 - Rutherford cable (comp. fact. ~90 %)
- Model Coils
 - Race-track coil to
 - Demonstrate the maximum field to reach 15 Tesla,
 - Investigate possible "react and wind" technique, and
 - Investigate radiation-hard technologies

Status of Nb3Al Development

Supercond. Sci. Technol. 18 (2005) p. 284. by N. Banno et al.

- Stable against mechanical strain, and potential for "React and Wind"
- High Jc in high magnetic field at > 15 T

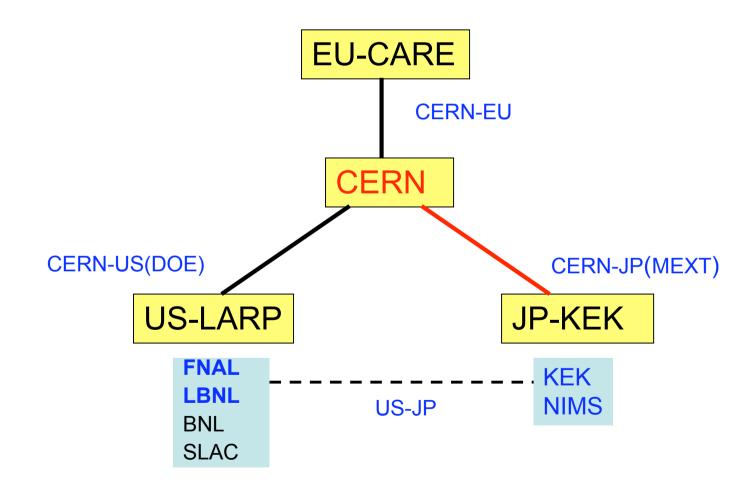
Status of Cooperation in Nb₃Al Development as of Nov. 2006

• NIMS

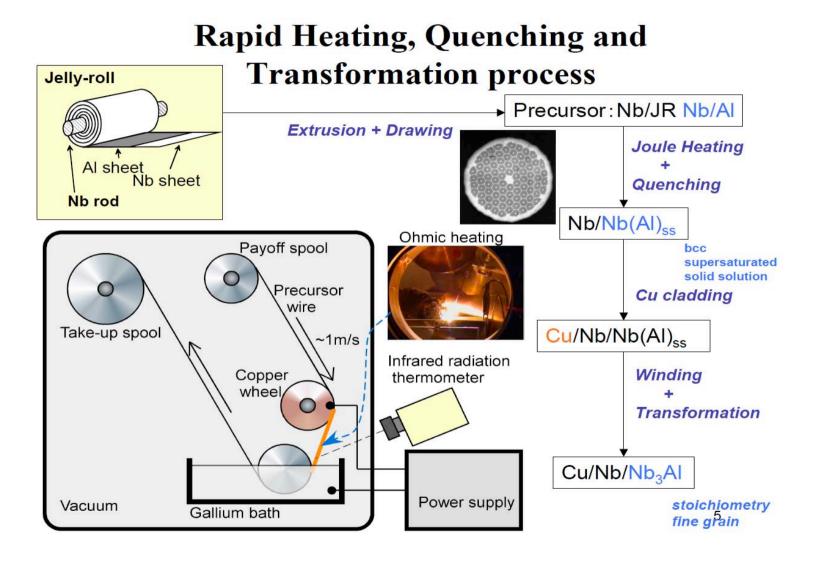
- Fundamental Research focusing on > 20 T
 - Strand with Cu-stabilizer (ion plating + electro-plating)

Fermilab/NIMS

Study for cabling and race-track coil

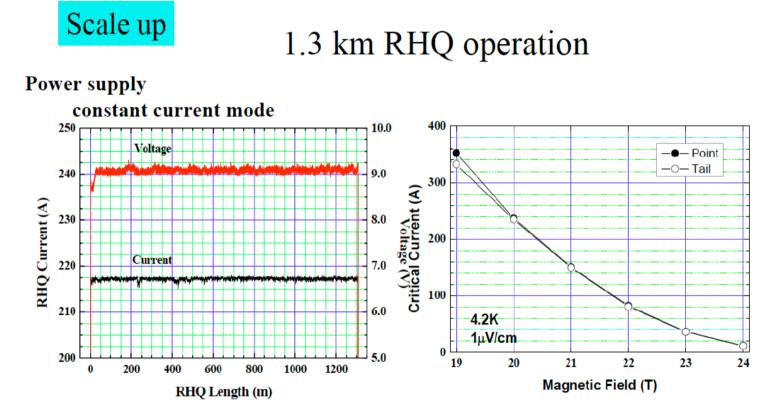

• **KEK/NIMS**

- Strand development for accelerator application at ~ 15 T
 - Jc improvement study with optimizining RHQ process
 - Cu-stabilizer (electro-plating)

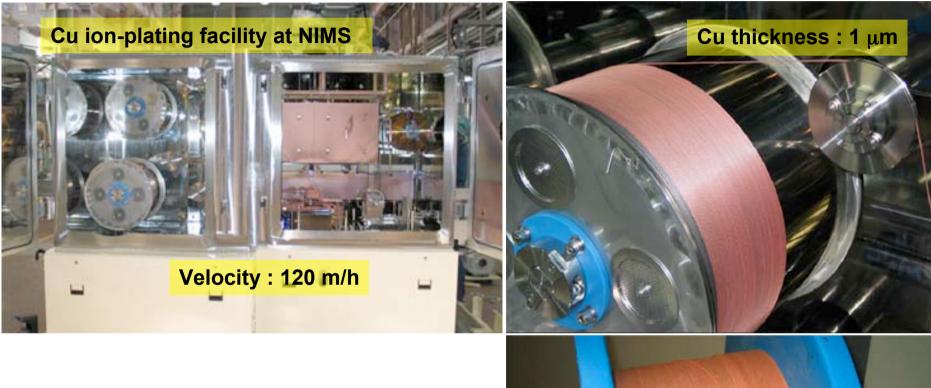

• CERN-KEK

 Advanced superconducting magnets for the LHC luminosity upgrae

Global Cooperation Network proposed



Fundamental Development at NIMS


T. Takeuchi et al. IEEE Trans. Appl. Superc. 12, 1 (2002) 1088.

A RHQ Record of 1.3 km Operation at NIMS

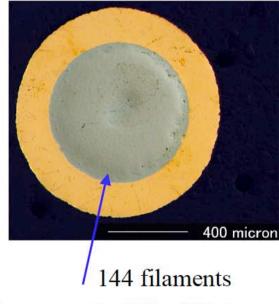
Small fluctuation of inter-electrode voltage and current over the whole length of RHQed wire **Little difference in** I_c between a head (point) and a tail of 1.3 km-length of wire

Cu-Stabilizing Process Developed at NIMS

Piece Length : 1,200 m

Strand Dia. : 1 mm

Cu/non Cu ratio : 50% / 50%


RRR : 200

K. Kikuchi et al., IEEE Trans. Appl.Superc., 16, 2, (2006) 1224.

Progress at NIMS 1.2 km long Nb3Al-Cu strand

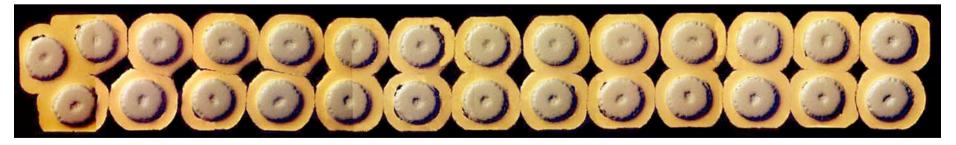
1.2 km long Nb₃Al strand used for the cabling test

Ic	a 15T = 380 A	4
Non-Cu Jc	a 15 T = 930 A	/mm2

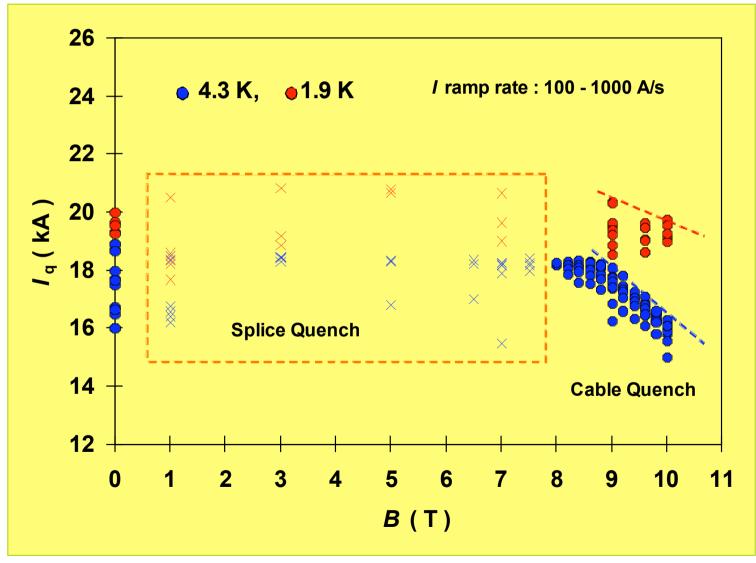
Identification No.	HE2457
Final outer diameter	1.03 mm
Number of Nb ₃ Al filament	144
Nb ₃ Al filament diameter	50 μm
Nb/Nb ₃ Al filament ratio	0.6453
Cu/non-Cu ratio	1.0
Total length	1250 m
Outer diameter at RHQ	1.35
Area reduction after RHQ	71%
Anode oxidation process	done
lon plating	1-2 μm
Electroplating	145 μm
Annealing after electroplating (air)	400 °C
Drawing (sizing) after electroplating	none

Fermilab-NIMS Collaboration 27 Strand Nb₃Al Rutherford Cable

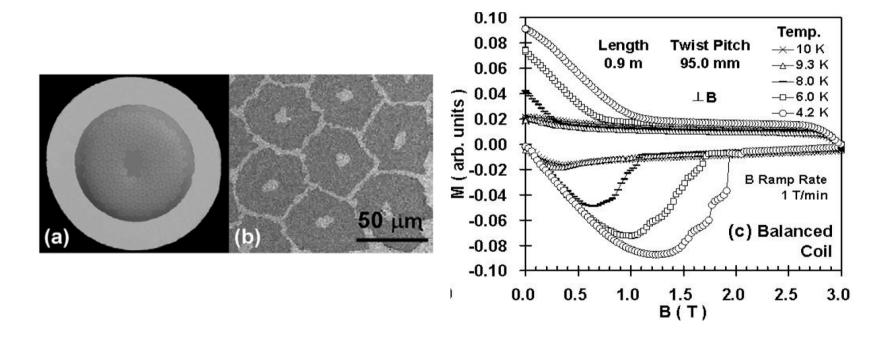
A. Kikuchi et al., ASC06-4ML06 R. Yamada, et al., ASC06-3LB02,


(a) Low Compaction Cable

Size (rectangular): 14.2 mm x 2.0 mm


Compaction Factor : 82.5 % Lay Angle : 15.0

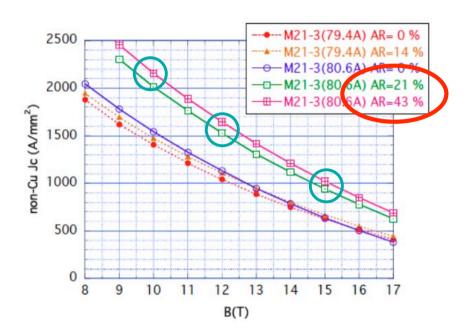
(b) High Compaction Cable



Size (rectangular): 14.2 mm x 1.8 mm Compaction Factor: 89.1 % Lay Angle: 15.0

Fermilab/NIMS-CERN Collaboration Cable Test at FRESCA

Magnetization in Nb3Al strands a subject to be investigated



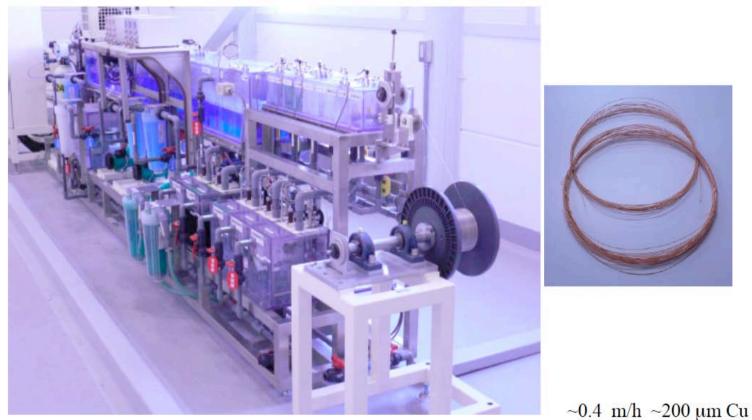
 Magnetization curve of reacted Nb3AI strands, tested using a balanced coil magnetometer

- A. Kikuchi et al., presented in ASC-06, (4ML06), Seattle, 2006

Nb3Al development at KEK

KEK/NIMS/(Hitachi-Cable) Cooperation

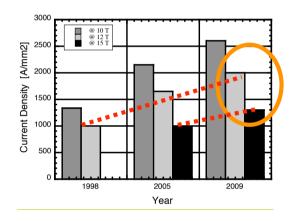
- Process
 - Rapid Heat & Quench
 - Current control important
 - Area Reduction
 - ~ 30 % reduction effective
- Non-Cu Current density
 - 2,150 A/mm2 @ 10 T
 - 1,600 A/mm2 @ 12 T
 - 1,000 A/mm2 @ 15 T
- Cu Stabilizer (Cu/NC ratio: 1:1)
 - Cu electro-plating
 - Cu/Non-Cu = 1.0 realized


K. Tsuchiya et al., (MT-19), IEEE Trans. IEEE Trans. 2, (2006) p.1204. C. Mitsuda et al., ASC-06, 4ML036

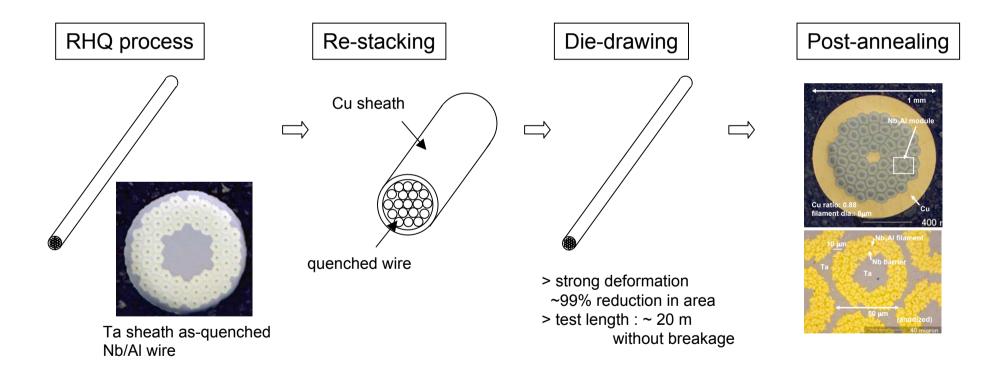
Continuous Cu-Plating Facility

for long strands at KEK (Nomura-Plating)

Pilot plant for continuous electroplating

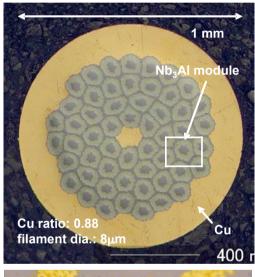

Plating speed may be improved to be ~ a few m/h

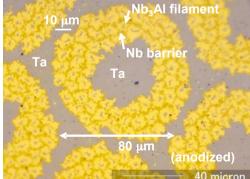
What understood ?


- Current density:
 - Jc achieved: ~ 1,000 A/mm² at 15 T, 4.2 K (KEK)
- Cu-stabilizer:
 - Electro-plating is positively examined up to a continous length of 1.2 km (NIMS)
- Cabling:
 - Successfully made at CF = 82 %, but Cu-stabilizer boundary not mechanically strong enough, (Fermilab-NIMS)
- Instability in low field found:
 - Associated with large magnetization in low field possibly because of Nb barrier/matrix
- Race track coil:
 - Successfully made and tested (Fermilab and NIMS).

Subjects for further development

- Jc: > 1,300 A/mm²
 - toward 1,500 A/mm² at 15 T, 4.2 K,
 - Optimization of RHQ current,
 - Optimization of Area reduction
- Cu stabilizer
 - Mechanical stability & process speed,
 - Length: > 1 km,
- Magnetization: as small as possible,
 - Ta barrier/matrix instead of Nb
- Cabling: higher compaction up to ~ 90 %
- Race-track coil
 - Evaluation of cable performance to reach 15 T,
 - Radiation-hard epoxy impregnation / insulation,
 - Study of react and wind




A Trial Process recently made at NIMS Ta-matrix/sheath with Double stack and Cu-tubing

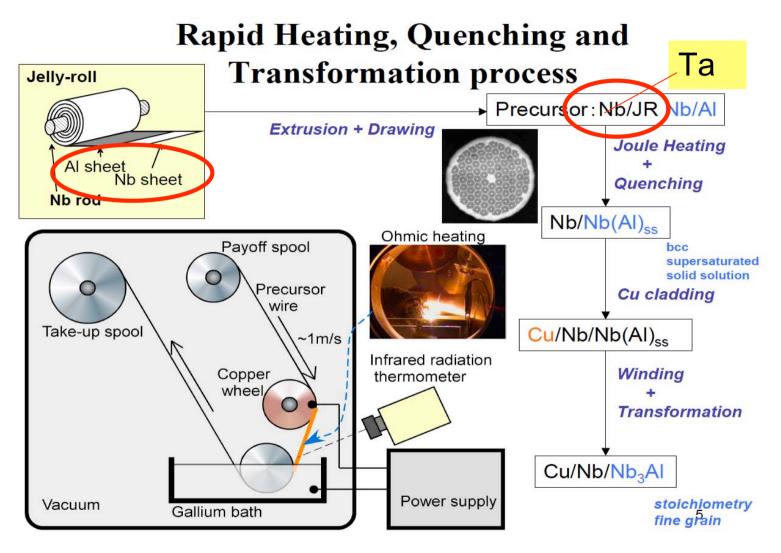
Filament size drastically becomes small

Design parameters of Ta matrix Nb3Al conductor

	M28-4
Wire diameter (mm)	1.0
Filament diameter (µm)	7.7
Sheath material	Cu
Sheath thickness (μ m)	115
Barrier material	Ta & Nb
Barrier thickness (µm)	1 st : 9.6, 2 nd : 1.0
Number of filaments	3564 (=66×54)
Matrix ratio to filaments	1.654
Cu/non-Cu ratio	0.84
Twist pitch (mm)	no
Bend strain limit for micro-cracking (equivalent bend strain at outermost filament location)	0.85% (0.66%)

Report of Recent Development at NIMS on Ta matrix

- Nb3AI strand with "Ta matrix"
 - Effective to reduce magnetization
 - T. Takeuchi et al., IEEE Trans. Appl. Superc. 15 (2005), 3327-3375.
- "Cu-tubing" on Ta sheath/matrix strand
 - Aimed at fast process for Cu stabilizing
 - N. Banno et al., presented in ASC-06, Seattle, 2006.


This research is supported by:

 Budget for Nuclear Research of the Ministry of Education, Culture, Sports, Science and Technology (MEXT), based on the screening and counseling by the Atomic Energy Commission

Development Plan at KEK JFY2006 - 2008

- Strand (FY2006-2007) with CERN-KEK Cooperation
 - Nb3Al/Nb-matrix/Cu-plating aiming at
 - Search for optimum and stable conditions
 - --> 1000 A/mm2 at 15 T, at non-Cu $\rm J_{c}$
 - Production of long strand (> 1km)
 - To enable cable production
 - Nb3Al/Nb-matrix/Cu-plating aiming at
 - Search for optimum condition for high J_{C} (>> 1000 A/mm2)
 - More uniform diffusion of AI into Nb (AI-sheet thickness opt.)
 - Nb3Al/Ta-matrix/C-tubing(or plating) to investigate
 - Reduce magnetization
 - Fast and cost-effective process for Cu-stabilizing
 - Short length (~ 100 m) for fundamental research
- Cable (2007-2008): with US-Japan Cooperation
 - See later.

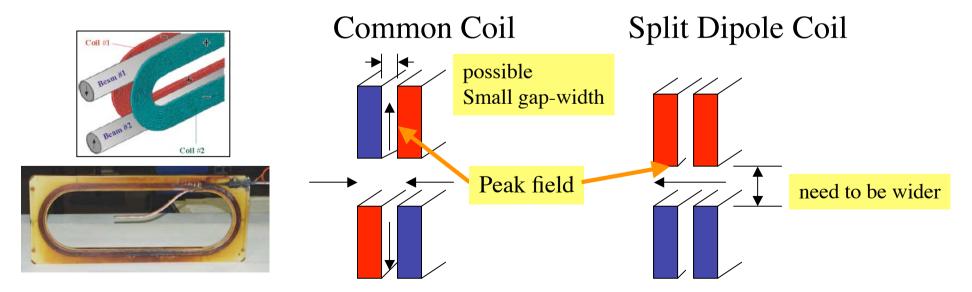
What will be investigated?

T. Takeuchi et al. IEEE Trans. Appl. Superc. 12, 1 (2002) 1088.

Nb3Al conductor R&D Plan (2006-2007) with CERN-KEK Cooperation

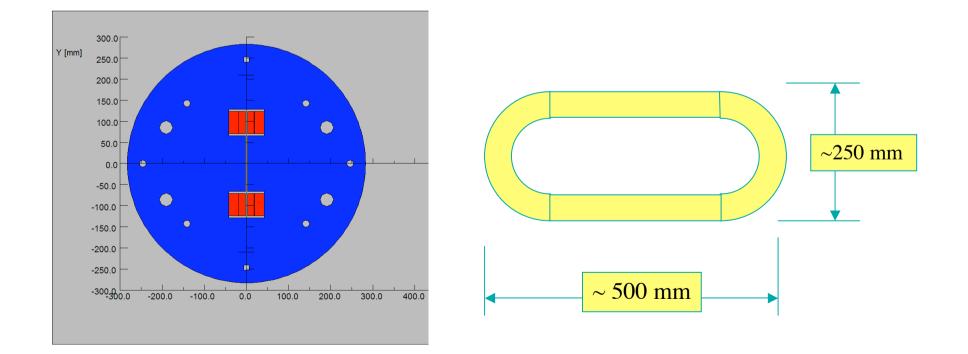
Matrix	Nb	Nb	Та
Purpose	Cu-plating, Cable	High Jc	Magnetization reduction,
			Cu-tubing
Length	2 x 1 km	3 x 100m	100 m
Diameter	1.35>> 0. 76 mm		1.35 >> 0.76
	X >> 0.76		
Al-thick.		150/200/250 nm	200 nm
Jc at 15 T	1,000 A/mm ²	>>1,000 A/mm ²	
Filament dia			69 >> 40 μm

Cable and Race Track Coil Development (JFY2007~2008): with US-Japan Cooperation

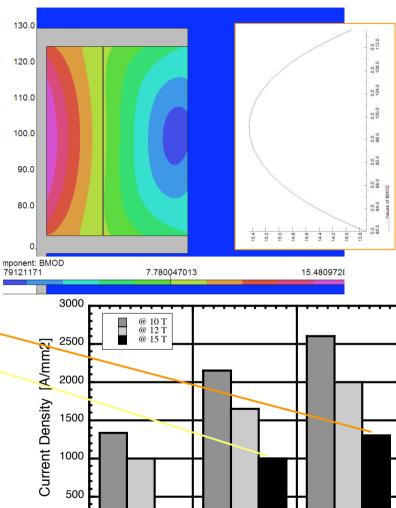

- Cable:
 - Mechanical stable, Rutherford cable in cooperation with FNAL
- Nb₃Sn (NbTi) race-track coil,
 - Technology transfer from LBNL for fabrication,
 - Practice with Nb3Sn(NbTi) cable,
 - Heat treatment, and insulation practice,
 - Possible R&D for radiation-hard epoxy-resin impregnation
- Nb3Al Race-track Coil,
 - Comparison with Nb3Sn coil,
 - Possible R&D for Wind & React, and React & Wind

A US-Japan cooperation program to be proposed

- Title:
 - Development of Advanced, High-field (A-15)
 Superconductor and Superconducting cable for the LHC luminosity upgrade
- Frame:
 - LARP magnet group and KEK-NIMS collaboration as part of the US-Japan cooperation program in high energy physics,


Race-track Coil for Cable Evaluation

- Quick development/feedback
- Common coil with small gap-width design
 - convenient to generate higher peak field in the coil, or
- Split Dipole Coil


A design; Race-track Magnet with Common Coil Design

- Common coil with iron yoke
 - Hybrid coil consisting of Nb₃Al and NbTi layers

Race Track Coil Parameters

	Nb3Al Coil	NbTi Coil
Layers	2	3
Turns/layer	35	35
X section	7.4 _w x 52.5 _h	7.4 _w x 52.5 _h
Coil size(mm)	250 x 500	250 x 500
Bmax	15.5 T@ 2009 (14.4 T@ 2005)	8.22 T
J _{SC} (A/mm2)	936 (~95 % Jc)	1211
I (kA)	5.265	5.265
Superconductor: Cu/Super ratio Jc (SC) (A/mm2) strand dia. No. strands cable size w/insulation	0.7 950 @ 15.5 T 4.2 K 0.7 mm 20 1.25 x 7.4 15 x 87.7	1.2 1300 @ 8.2 T, 1.9 K 0.7 mm 20 1.25 x 7.4 1.5 x 7.8

Year

Development Plan

	JFY06	JFY07	JFY08	JFY09	JFY10	JFY11
Strand with Cu stabilizer						
Cabling						
Race track coil		Nb3Sn	Nb3Al			
Test & evaluation						
Acc. Magnet model (Phase II)*						

* The plan to be reviewed and to be updated for further extension by the end of FY-08.

Budget proposed

	JFY-06	JFY-07*	JFY-08*	JFY-09*
Strand	15,800	23,000	15,000	0
Cable	(US-JP)	(US-JP)	(US-JP)	(US-JP)
Model Coil	1,000	5,000	12,000	0
Test	2,000	3,500	6,500	1,500
Work Assist. Travel, etc,	1,200	1,500	1,500	500
Total	20,000	33,000	35,000	2,000

* tentative

- We are progressing development of Nb3Al superconductor and intending to realize applicable cable for the LHC luminosity upgrade,
- An R&D cooperation net work is proposed, based on two cooperation frame works of CERN-KEK cooperation and the US-LARP(magnet group)-KEK collaboration
 - CERN-KEK : to develop Nb3Al strand, and associated A-15 conductor technology (such as radiation-hard insulation technology),
 - LARP-KEK: to develop Nb3Al cable, and instruct A-15 race-track (subscale) magnet technology,
- The R&D is to realize the Nb₃Al cable applicable at ~ 15 Tesla and to evaluate the performance by 2009 to enable to:
 - Contribute to the LHC luminosity upgrade magnet development.