

Highlights from the ALICE experiment

ALICE PRESENT AND NEAR FUTURE

- Start of the LHC Run 3
 - Extend Run 3 until end of 2024 (decided already pre-COVID)
 - LHC default scenario: cavern closes 1st February 2022
 - 4 months of ALICE Global Commissioning
- ALICE strategy for Run 3
 - 50 kHz Pb-Pb interaction rate (Run 2 < 10 kHz)
 - Experiment upgrades during LS2 Fragment
 - Continue to collect pp with high multiplicity trigger and achieve PbPb (x 3 more precise tracking and x 100 statistics increase)
- Physics goals : CERN Yellow Report, arXiv:1812.06772
 - High-precision measurement(h^{\pm} , PID..) \rightarrow viscosity and further QCD transport coefficients.
 - Heavy-flavours and jets
 - Charmonium states

- \rightarrow Investigating the quasi-particle structure of QCD matter.
- \rightarrow Testing colour screening and regeneration dynamics.
- Dileptons and low-mass vector mesons $\rightarrow \chi$ symmetry restoration, initial temperature and EoS.

ALICE Run3 and beyound

Upgraded Experiment – ALICE 2

ALICE Collaboration:

39 countries, 175 institutes, 1927 members 311 papers.

ALICE Finland:

3 seniors, 1 post doc, 4 PhD-students ($\approx 0.5\%$ of ALICE)

- Sami Räsänen (Team Leader, HIP project leader)
- Wladyslaw Trzaska (FIT project leader)
- DongJo Kim (Flow PWG convener)
- Maciej Slupecki (FIT software coordinator)
- Jasper Parkkila (PhD-student, flow, TPC)
- Heidi Rytkönen (PhD-student, flow, FIT)
- Oskari Saarimäki (PhD-student, jets, FIT)
- Anna Önnerstad (PhD-student, flow)

ALICE 2 is build on the great success of the past 10 years operation. TPC(detector 15), FIT(2 + 13 + 14 + 17), ALICE Grid Tier-1 since 2007

ALICE Run3 and beyound

Key elements of ALICE Upgrades for Run 3

6 to 7 layers, $|\eta| < 1.0 \rightarrow 1.5, 1 \rightarrow 100 \text{kHz}(\text{PbPb})$

New Inner Tracking System (ITS)

-CMOS pixel, MAPS technology -Improved resolution, less material, faster readout

New Muon Forward Tracker (MFT) -CMOS Pixels, MAPS technology $\psi(2S) S/B x5$

-CMOS Pixels, MAPS technology -Vertex tracker at forward rapidity

New TPC Readout Chambers (ROCs)

-Gas Electron Multiplier (GEM) technology $50kHz PbPb, \approx 34 TB/s$ -New electronics (SAMPA), continuous readout

New Fast Interaction Trigger (FIT) Detector 📑

Centrality, event plane, luminosity, interaction time

Readout upgrade

-TOF, TRD, MUON, ZDC, Calorimeters

Integrated Online-Offline system (O²)

-Record MB Pb-Pb data at 50 kHz

LS2 upgrade of ALICE experiment is nearing completion

Return of the upgraded TPC, 4 August 2020

nstallation of FIT FV0 into the miniframe, 6 October 2020

W.H.Trzaska ALICE upgrade talk in NN2020 11-17 Oct.(Link)

Reinsertion of the TPC 6 August 2020

NUCLEUS 2020

V

MFT and FTO-C ready for installation

WORTcrask

HEAVY-ION COLLISIONS, CENTRALITY AND PARTICLE PRODUCTIONS

Soft probes $\eta/s(T)$

Space-time history of Heavy-Ion Collisions

Quark-gluon plasma (QGP) is a nearly perfect guark-gluon fluid: Best fit seems to indicate $\eta/s \approx 0.12$ around $T_c \approx 150$ MeV, very close to $1/4\pi$ (≈ 0.08) from string theory^{*a*}(AdS/CFT correspondence).

^aD. T. Son et. al. Phys. Rev. Lett. 94 (2005) 111601

Soft probes $\eta/s(T)$

CURRENT UNDERSTANDING OF THE MEDIUM PROPERTIES

- ALICE data on multiplicity, spectra and flow are key inputs to estimate the properties of the QGP (including p–Pb data), i.e Global Bayesian Analysis and other theory groups.
- Latest bayesian analysis gives very small ζ/s(T), 0.04 compared to 0.4 (x10).
- $\eta/s(T)$ and $\zeta/s(T)$ should be constrained further (larger uncertainties) by separating the effects from the initial conditions.

^aPhys.Rev.Lett. 115 (2015) no.13, 132301

HIGHER FLOW HARMONICS SEEN BY ALL EXPERIMENTS

- Sensitive to initial state geometry and properties of the expanding QGP (viscosity(η/s), equation of state)
- Like measurements of early universe sound harmonics

0.2°

1000

WMAP

Achar

Boomerang

1500

Soft probes Flow analysis

v_2 vs $\sqrt{s_{NN}}$ and flow power spectrum

ALICE had measured the largest flow v_2 in 2010! ALICE has measured the largest harmonic order flow(up to v_9) so far!

Soft probes Flow analysis

HIGH PRECISION FLOW RESULTS AND NEW DEVELOPMENTS

- Nonlinear components of high order harmonics are decomposed, showing better sensitivity for $\eta/s(T)$.
- Exponential decrease via viscosity damping, a hint that $v_9 > v_8$, acoustic peak?
- Three harmonic correlations might be more sensitive to $\zeta/s(T)$.
- Provide new and independent constraints for initial conditions and QGP properties.

 $\label{eq:two-harmonic versions are published} (PRL 117(2016)182301, PRC 97(2018) 024906).$ Very challenging measurements because of their required high precisions (i.e 1e-6 SC(m,n), 1e-12 for SC(k, J,m))) and difficulties in correcting experimental biases.

Hard Probes Properties of the QGP

TRANSPORT PROPERTIES

Hard Probes Jet Quenching

DI-JET, JET QUENCHING CAN BE SEEN VISUALLY

• We can see a clear away side jet suppression for this special PbPb event (Jet Quenching in QGP).

Hard Probes Jet Quenching

Deeper understanding of jet quenching is not an option

- How do T or scale dependent features translate to final state?
- An unambiguous determination of both sides of [the equation] from experimental data ? (Phys. Rev. Lett., 99:192301, 2007)

$$\frac{\eta}{s} \left\{ \begin{array}{c} \approx \\ \gg \end{array} \right\} 1.25 \frac{T^3}{\hat{q}} \qquad \left\{ \begin{array}{c} \text{for} \\ \text{for} \end{array} \right.$$

for weak coupling, for strong coupling.

Hard Probes Jet Quenching

Further constraining Jet quenching model with j_T and m_{ij} , Jet virtuality evolution

• Modification of transverse profile of jet fragmentation - about to be submitted to JHEP.

• Proving medium path length via di-jets¹-[Oskari Saarimaki, p-Pb(being done), PbPb(from 2021)]

¹PRC 75 (2007) 054910, JEWEL(JHEP 1707 (2017) 141)

13TeV PP HIGH MULTIPLICITY TRIGGER

- Full 13TeV pp data sets including high multiplicity triggered events.
- The studies on different multiplicity selection biases submitted to EPJC (arXiv:2009.09434)

Event scale dependent ridge/flow studies in PP collisions

- The ridge/flow is observed clearly for hard events for the first time.
- Additional information on initial states via jet or multi-jet events, the impact parameter dependence.
- Initial state or final state effects?
 - importance of detailed fluctuating gluon density in a proton.
- The analysis can be improved significantly with high luminosity pp running during Run 3 and 4.

- Precision measurements on soft observables
 - Higher precision data on $\langle dN_{ch}/d\eta \rangle$, spectra and v_n become "Run"-ly routine.
 - $\langle v_m v_n \rangle$ correlations and the nonlinear response of $v_n(n>3) \rightarrow$ Strong constraint on the $\eta/s(T)$.
 - $\zeta/s(T)$ should be better constrained with new observables, i.e $\langle v_k v_l v_m \rangle$.
 - Significant role in the ALICE review paper in preparation.
- No one thought that temperature dependence of the medium properties would be accessible with the experimental data (K.J. Eskola, Jyväskylä colloquium, March 2015).
- Significant pioneering contributions from Jyväskylä Univ.(Thanks to the collaborative efforts).
- A lot more to learn from Run 3 and 4 data including jets and heavy flavours.
- LHC/ALICE is being prepared for the future.
 - LS2 upgrade of ALICE experiment is nearing completion to fully exploit the higher rate and to improve the physics performance.
 - x 3 more precise tracking
 - x 100 statistics increase for Run 3 and Run 4

Celebrating Maciej's defence on 12th Jun 2020

Jasper missing from Figure, Anna started 1st Sep 2020

Oskari, Heidi, Maciej, Wladek, Sami, DongJo Thank You!

backup

ALICE UPGRADES FOR RUN 4

backup

Jet virtuality evolution matters with medium temperature

- Jet virtuality evolution paths simultaneous with the QGP temperature evolution for central Au+Au and Pb+Pb collisions at RHIC and the LHC
- Jet tomography in medium gets complicated with $p_{\rm T}$ or flavor dependent shower evolution.