Nuclear shadowing and electroweak-boson production in heavy-ion collisions

PARTICLE PHYSICS DAY 2020

Ilkka Helenius

November 5th, 2020

arXiv: 2003.11856 [hep-ph], Accepted in PRL K. J. Eskola, I. Helenius, M. Kuha and H. Paukkunen JYVÄSKYLÄN YLIOPISTO UNIVERSITY OF JYVÄSKYLÄ

Outline

- 1. Motivation
- 2. Electroweak-boson production in p+p, p+Pb and Pb+Pb

1

- 3. Glauber modelling and data-preferred value for σ_{nn}^{inel}
- 4. Eikonal minijet model with nuclear shadowing
- 5. Summary & Outlook

Motivation

ATLAS Pb+Pb data from Run 2

- W[±] production (0-80%) [EPJC 79 (2019) 11, 935]
- Z production (0-100%) [PLB 802 (2020) 135262]
- Percent-level uncertainties
- Not sensitive to QGP
- $\Rightarrow\,$ Allows precision studies for
 - Initial state nuclear effects
 - Glauber model calibration/validation

[Paukkunen, Salgado, JHEP 03 (2011) 071]

Motivation

Also centrality-dependent data

- Unexpected rise of *R*_{AA} towards more peripheral events
- Similar for W^+ , W^- and Z
- Geometrical and selection biases (HG-Pythia) suggest an opposite behaviour

Theoretically well-constrained

- High-scale processes $(Q^2 = M_Z^2, M_W^2 \sim 10\,000 \text{ GeV}^2)$ \Rightarrow Can treat perturbatively
- Next-to-next-to-leading order (NNLO) calculations available [MCFM: EPJC 77 (2017) 1, 7]
- Proton PDFs available at NNLO [NNPDF3.1: EPJC 77 (2017) 10, 663]
- Very good agreement with p+p data at $\sqrt{s} = 5.02$ TeV when using NNPDF3.1 for W^+

Theoretically well-constrained

- High-scale processes $(Q^2 = M_Z^2, M_W^2 \sim 10\,000 \text{ GeV}^2)$ \Rightarrow Can treat perturbatively
- Next-to-next-to-leading order (NNLO) calculations available [MCFM: EPJC 77 (2017) 1, 7]
- Proton PDFs available at NNLO [NNPDF3.1: EPJC 77 (2017) 10, 663]
- Very good agreement with p+p data at $\sqrt{s} = 5.02$ TeV when using NNPDF3.1 for W⁺, W⁻

Theoretically well-constrained

- High-scale processes $(Q^2 = M_Z^2, M_W^2 \sim 10\,000 \text{ GeV}^2)$ \Rightarrow Can treat perturbatively
- Next-to-next-to-leading order (NNLO) calculations available [MCFM: EPJC 77 (2017) 1, 7]
- Proton PDFs available at NNLO [NNPDF3.1: EPJC 77 (2017) 10, 663]
- Very good agreement with p+p data at $\sqrt{s} = 5.02$ TeV when using NNPDF3.1 for W⁺, W⁻ and Z

[ATLAS: EPJC 79 (2019) 2, 128]

- Collinear factorization ⇒ Absorb nuclear effects into nuclear PDFs (nPDFs)
- Excellent agreement with CMS W^{\pm} data and EPPS16 nPDFs in p+Pb

State-of-the-art framework

- Calculate the cross sections at NNLO in pQCD using MCFM [version 8.0, EPJC 77 (2017) 1, 7]
- NNLO free proton PDFs from NNPDF3.1 analysis
 [EPJC 77 (2017) 10, 663]
- Nuclear modifications from EPPS16 NLO analysis
 [EPJC 77 (2017) 3, 163]

State-of-the-art framework

- Calculate the cross sections at NNLO in pQCD using MCFM [version 8.0, EPJC 77 (2017) 1, 7]
- NNLO free proton PDFs from NNPDF3.1 analysis
 [EPJC 77 (2017) 10, 663]
- Nuclear modifications from EPPS16 NLO analysis
 [EPJC 77 (2017) 3, 163]

State-of-the-art framework

- Calculate the cross sections at NNLO in pQCD using MCFM [version 8.0, EPJC 77 (2017) 1, 7]
- NNLO free proton PDFs from NNPDF3.1 analysis
 [EPJC 77 (2017) 10, 663]
- Nuclear modifications from EPPS16 NLO analysis
 [EPJC 77 (2017) 3, 163]

systematic offset in normalization

Monte-Carlo (MC) Glauber model for heavy-ion collisions

MC Glauber simulations

- Sample nucleon positions
- Sample impact parameter *b*
- Calculate $N_{\rm bin}$ and $N_{\rm part}$, N-N collision if $d < \sqrt{\sigma_{\rm nn}^{\rm inel}/\pi}$
- Classify collisions based on multiplicity and calculate $\langle N_{\rm bin} \rangle_c$
- ⇒ Normalization for a centrality class c: $\langle T_{PbPb} \rangle = \langle N_{bin} \rangle_c / \sigma_{nn}^{inel}$
 - We use TGlauberMC (version 2.4) [SoftwareX 1-2 (2015) 13-18]

Monte-Carlo (MC) Glauber model for heavy-ion collisions

MC Glauber simulations

- Sample nucleon positions
- Sample impact parameter *b*
- Calculate $N_{\rm bin}$ and $N_{\rm part}$, N-N collision if $d < \sqrt{\sigma_{\rm nn}^{\rm inel}/\pi}$
- Classify collisions based on multiplicity and calculate $\langle N_{\rm bin} \rangle_c$
- ⇒ Normalization for a centrality class c: $\langle T_{PbPb} \rangle = \langle N_{bin} \rangle_c / \sigma_{nn}^{inel}$
 - We use TGlauberMC (version 2.4) [SoftwareX 1-2 (2015) 13-18]

To study nuclear effects it is useful to consider nuclear modification ratio R_{AA} Experimental definition Theoretical definition

$$R_{\rm PbPb}^{\rm exp}(y) = \frac{1}{\langle T_{\rm PbPb} \rangle} \frac{\frac{1}{N_{\rm evt}} dN_{\rm PbPb}^{W^{\pm},Z}/dy}{d\sigma_{\rm pp}^{W^{\pm},Z}/dy}$$

- $\langle T_{\rm PbPb} \rangle = \langle N_{\rm bin} \rangle_c / \sigma_{\rm pn}^{\rm inel}$
- $\langle N_{\rm bin}(\sigma_{\rm nn}^{\rm inel}) \rangle_{\rm c}$ from MC Glauber
- Conventionally $\sigma_{nn}^{\text{inel}} = \sigma_{nn}^{\text{inel}}$ $(\approx 70 \pm 5 \text{ mb at } \sqrt{s} = 5.02 \text{ TeV})$

$$R_{\text{PbPb}}^{\text{theor}}(y) = \frac{1}{(208)^2} \frac{\mathrm{d}\sigma_{\text{PbPb}}^{W^{\pm},Z}/\mathrm{d}y}{\mathrm{d}\sigma_{\text{Pp}}^{W^{\pm},Z}/\mathrm{d}y}$$

- Min.bias $d\sigma_{PbPb}$ normalized with number of nucleons
- Nuclear effects for $d\sigma_{PhPh}$ derived from nuclear PDFs (nPDFs)

Our idea: Use EW bosons as a standard candle and equate \sim min.bias $R_{\text{phph}}^{\text{exp}}$ with $R_{\rm pbpb}^{\rm theor}$ to obtain data-preferred values for $\langle T_{\rm PbPb} \rangle$ and $\sigma_{\rm nn}^{\rm inel}$ in Pb+Pb

Fit results

• Data points obtained from equating R_{PbPb}^{exp} with R_{PbPb}^{theor} and solving for $\langle T_{PbPb} \rangle$ Result: $\sigma_{nn}^{inel} = 41.5_{-12.0}^{+16.2}$ mb instead of $\sigma_{pp}^{inel} = 70 \pm 5$ mb used by ATLAS

Resulting $R_{PbPb}^{W^{\pm},Z}$

- · Original data lie systematically above the theory predictions
- Data re-normalized with $\langle T_{\rm PbPb} \rangle$ using $\sigma_{\rm nn}^{\rm inel} =$ 41.5 mb is well described with the theory setup

Impact on centrality dependence

ATLAS result

- *R*_{PbPb} rise towards more peripheral collisions
- Large variations in σ_{nn}^{inel} cause modest changes in $\langle T_{PbPb} \rangle$ for (close to) minimum bias

Impact on centrality dependence

ATLAS result

- *R*_{PbPb} rise towards more peripheral collisions
- Large variations in σ_{nn}^{inel} cause modest changes in $\langle T_{PbPb} \rangle$ for (close to) minimum bias
- The unexpected rise turns into flat (or even slightly decreasing) trend

Impact on centrality dependence

ATLAS result

- *R*_{PbPb} rise towards more peripheral collisions
- Large variations in σ_{nn}^{inel} cause modest changes in $\langle T_{PbPb} \rangle$ for (close to) minimum bias
- The unexpected rise turns into flat (or even slightly decreasing) trend
- Also some other centrality-dependent effects expected

An eikonal minijet model

• No soft component, all cross section purely from (LO) pQCD

$$\begin{split} \sigma_{nn}^{\text{inel}}(s, p_0, \lambda, Q) &= \pi \int_0^\infty \mathrm{d} b^2 \left[1 - \mathrm{e}^{-\sigma_{\text{jet}}(s, p_0, Q)T_{\text{pp}}(b, \lambda)} \right] \\ \sigma_{\text{jet}}(s, p_0, Q) &= \int_{p_0} \mathrm{d} p_{\text{T}} \sum_{i, j, k, l} f_i(Q) \otimes f_j(Q) \otimes \hat{\sigma}_{ij \to kl}(Q) \\ T_{\text{pp}}(b, \lambda) &= \frac{1}{4\pi\lambda^2} \mathrm{e}^{-\frac{b^2}{4\lambda^2}} \end{split}$$

- Fit cut off p_0 to $\sigma_{pp}^{\text{inel}}$ and fix width parameter λ using σ_{pp}^{tot}
- Apply nPDFs to compute $\sigma_{nn}^{inel}(s, p_0, \lambda, Q)$ in Pb+Pb

Results from eikonal minijet model

Nuclear suppression from shadowing

- Two nPDF sets, EPPS16 and nCTEQ15, error bands scaled to 68% cl.
- Three scale choices, $Q = p_T/2, p_T, 2p_T$
- Suppression derived from ATLAS EW data in line with nuclear shadowing

Summary

- Using EW boson data in Pb+Pb collisions and a state-of-the-art pQCD-based calculation we have obtained a nuclear-modified value for $\sigma_{\rm nn}^{\rm inel}$
- ATLAS data prefer significantly suppressed σ_{nn}^{inel} at $\sqrt{s_{nn}} = 5.02 \text{ TeV}$

$$\sigma_{nn}^{inel} = 70 \pm 5 \text{ mb} \rightarrow 41.5^{+16.2}_{-12.0} \text{ mb}$$

- In line with an eikonal minijet model including nuclear shadowing of PDFs
- Explains also unexpected centrality dependence of $R_{PhPh}^{W^{\pm},Z}$

Outlook

- Preliminary CMS Z-boson data show the opposite centrality dependence, is the tension real or related to different MC Glauber modelling?
- Study further by including other centrality-dependent effects

Backup slides

Fit $\sigma_{\rm nn}^{\rm inel}$ by minimizing χ^2 defined as

$$\chi^{2} = \sum_{i} \left[\frac{R_{\text{pbpb},i}^{\text{exp}} \frac{\langle T_{\text{pbpb}}^{i}(\sigma_{\text{pp}}^{\text{inel}}) \rangle}{\langle T_{\text{pbpb}}^{i}(\sigma_{\text{nn}}^{\text{inel}}) \rangle} - R_{\text{pbpb},i}^{\text{theor}} + \sum_{k} f_{k} \beta_{i}^{k}}{\int_{k}^{2} \frac{\langle T_{\text{pbpb}}^{i}(\sigma_{\text{pp}}^{\text{inel}}) \rangle}{\langle T_{\text{pbpb}}^{i}(\sigma_{\text{nn}}^{\text{inel}}) \rangle}} \right]^{2} + T \sum_{k} f_{k}^{2}$$

wrt. σ_{nn}^{inel} and f_k (1+20 parameters)

- $\beta_i^k = \frac{1}{2} [R_i^{\text{theor}}(S_k^+) R_i^{\text{theor}}(S_k^-)]$ accounts for EPPS16 uncertainties
- $T = 1.645^2$ from scaling the uncertainties from 90% into 68% confidence level
- Monte-Carlo (MC) Glauber maps σ_{nn}^{inel} to $\langle T_{PbPb} \rangle$ for both centrality classes, 0-80% for W^{\pm} and 0-100% for Z

_

ATLAS and suppressed σ_{nn}^{inel}

centrality	ATLAS	70.0 mb	57.7 mb	41.5 mb	29.5 mb
0 - 2%	28.30	28.26	28.39	28.55	28.69
2 - 4%	25.47	25.51	25.67	25.91	26.10
4 - 6%	23.07	23.09	23.28	23.55	23.80
6 - 8%	20.93	20.94	21.14	21.45	21.73
8 - 10%	18.99	19.00	19.23	19.56	19.86
10 - 15%	16.08	16.08	16.31	16.67	17.02
15 - 20%	12.59	12.58	12.83	13.22	13.59
20 - 25%	9.77	9.762	10.01	10.40	10.78
25 - 30%	7.50	7.487	7.722	8.102	8.469
30 - 40%	4.95	4.933	5.138	5.474	5.808
40 - 50%	2.63	2.628	2.780	3.036	3.300
50 - 60%	1.28	1.281	1.378	1.550	1.733
60 - 80%	0.39	0.395	0.435	0.510	0.595
80 - 100%	0.052	0.052	0.060	0.076	0.096
0 - 80%	7.00	6.993	7.143	7.385	7.624
0 - 100%	5.61	5.605	5.726	5.923	6.118

CMS compared to suppressed $\sigma_{\rm nn}^{\rm inel}$

centrality	CMS	70.0 mb	57.7 mb	41.5 mb	29.5 mb
0 - 5%	25.70	26.24	26.39	26.61	26.79
5 - 10%	20.40	20.48	20.69	21.00	21.29
10 - 20%	14.39	14.33	14.57	14.95	15.30
20 - 30%	8.80	8.624	8.866	9.251	9.623
30 - 40%	5.12	4.933	5.138	5.474	5.808
40 - 50%	2.78	2.628	2.780	3.036	3.300
50 - 70%	0.996	0.9223	0.9986	1.134	1.281
70 — 90%	0.165	0.1519	0.1708	0.2073	0.2509
0 - 90%	6.27	6.225	6.359	6.577	6.793
0 - 100%	5.65	5.605	5.726	5.923	6.118

Impact to centrality dependence

Suppressed σ_{nn}^{inel}

- Small effect for central collisions
- More pronounced effect for peripheral collisions

Other possible effects

- Neutron-skin effect
- Decreasing shadowing towards more peripheral collisions
- Geometrical bias
- Selection bias

CMS Glauber simulations

Resulting $\langle T_{\rm PbPb} \rangle$

- Compare CMS results to ATLAS-type setup with nominal and suppressed values of σ^{inel}_{nn}
- Different centrality dependence between ATLAS and CMS
- ⇒ Part of the mismatch with ATLAS due to Glauber simulations but not enough to resolve the tension
 - TGlauber version (2.4 vs 3.2) does not make much difference

[CMS: Phys.Lett.B 800 (2020) 135048]

How the effect accumulates towards peripheral collisions

Integrate from 0 to c%

- Most of the modification builds up already from 0–60%
- Less weight from peripheral collisions
- ⇒ Uncertainties in the periphery do not have large impact in σ^{inel} determination from min. bias data

MC Glauber model for heavy-ion collisions

MC Glauber simulations

- We use TGlauberMC (version 2.4) [SoftwareX 1-2 (2015) 13-18]
- Centrality classification with two-component model including negative binomial fluctuations

$$N_{\text{ancest}} = [x N_{\text{part}} + (1 - x) N_{\text{bin}}]$$
$$N_{\text{final}} = \sum_{i=1}^{N_{\text{ancest}}} P_{\text{NBD}}^{n}(\mu, \kappa)$$

with x = 0.801, μ = 46.4, κ = 1.5 [ALICE-PUBLIC-2018-011]

Does modified σ_{nn}^{inel} ruin Glauber fits?

Centrality classification

- Fit multiplicity (or ΣE_T) to fix Glauber parameters
 - x, fractions of N_{part} and N_{bin}
 - μ , mean of NBD
 - κ, width of NBD [ALICE-PUBLIC-2018-011]
- Reduced $\sigma_{\rm nn}^{\rm inel} \Rightarrow {\rm less}$ multiplicity
- Can be compensated by increasing μ
- Very small impact on $\langle T_{PbPb} \rangle$

Preliminary CMS data for Z

[CMS PAS HIN-19-003]

CMS result

- Also min.bias behaviour is somewhat different from ATLAS
- Is normalization from measured luminosity or Glauber simulations?

Preliminary CMS data for Z

[CMS PAS HIN-19-003]

CMS result

- Decreasing normalized yield with centrality (opposite to ATLAS)
- Data consistent with HG-PYTHIA accounting for geometrical (HIJING) and selection biases (PYTHIA)
- No support for σ_{nn}^{inel} suppression