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The (electro)weak interactions
● 1896: radioactivity observed by Bequerel

● 1920/1930: beta-decay doesn’t seem to conserve 
energy/momentum and angular momentum

● 1930: Pauli suggests the existence of a neutral, light, spin ½ 
particle (neutrino)

● 1956: Lee & Yang point out that there is no experimental 
evidence for parity conservation in weak interactions

● 1957: Wu et al observe parity violation in beta-decay

● 1960: V-A theory (Feynman, Gell-Man and others)

● 1967/68: Glashow-Weinberg-Salam model

● 1973: weak neutral currents observed

● 1982: weak bosons (Z,W) discovered

● >1989: electroweak precision testes (LEP, SLC, Tevatron)
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The weak interactions

● What about            ? 
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The weak interactions
● The fact that                  is not observed suggests the 

existence of conserved additive quantum numbers: 

       

           the lepton numbers

● Notice that the given examples of weak processes involve 
neutrinos: electrically neutral and (almost) massless 
particles which can only interact by the weak interaction          
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The weak interactions
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The weak interactions
● In 1932 Fermi proposes a theory inspired by the 

electromagnetic interaction to explain the beta-decay 
● Electromagnetic electron-proton scattering:

 

● Consider the beta-decay process

   crossing:
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The weak interactions Parity violation

The parity of pion from:

1) we can determine the internal parity of the pion by studying 
pion capture by a deuteron:

2) Pion Spin: 0          Deuteron Spin: 1         Neutron Spin: ½

3) pion captured by the deuteron from a 1S state ( l = 0 )
Total Angular Momentum of the Initial State, j=1 

4) The parity of initial state:

The parity of pion from:

5) The parity of final state:

 (internal) Parity: 
+1

6) States for the (n,n) system:
the one with j=1 is:        (l=1)    
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The weak interactions Parity violation
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The weak interactions Parity violation

Kaons (Strange particles)
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Parity in the weak interactions

Phys. Rev. 105, 1413–1415 (1957)



                                                                          MAP-Fis, FEPA, 2020 11

Parity in the weak interactions

The observed correlation between the nuclear spin and the electron 
momentum is explained if the required Jz = 1 state is formed by a 
right-handed antineutrino and a left-handed electron
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Parity in the weak interactions

● Nature favors one side of the mirror!
● No right-handed neutrinos (left-handed antineutrinos) 

are observed!
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Parity in the weak interactions
● The cumulative evidence of many experiments is that 

only right-handed antineutrinos and left-handed 
neutrinos are involved in weak interactions

● The absence of the “mirror image” states is a clear 
violation of parity invariance

● Charge conjugation (C) invariance is also violated, 
since C transforms a left neutrino state into a left 
antineutrino state

 

● What about CP invariance?...
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Helicity and zero-mass fermions
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Helicity and zero-mass fermions
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Helicity and zero-mass fermions
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PL and PR operators
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1950's: more and more particles discovered

● Willis Lamb Nobel lecture in 1955:
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The Eightfold Way (1961-1964)
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The Eightfold Way (1961-1964)
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The Eightfold Way (1961-1964)

Predicted in 1962 by
Gell-Mann and discovered
In 1964



                                                                          MAP-Fis, FEPA, 2020 22

The quark model (1964)
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The quark model (1964)
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The quark model (1964)

With 4 quarks, 
we can build 
supermultiplets:
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The quark model (1964)

Each quark have 3 different colors: red, green, blue
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Quantum Chromodynamics (QCD)

● Quarks carry color as well as electric charge

● Color is exchanged by eight bicolored gluons

● Color interactions are assumed to be a copy 
of electromagnetic interactions with the 
change                    

● The gluons are massless and have spin 1

● Gluons carry color themselves, so they can 
interact with other gluons
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Quantum Chromodynamics (QCD)
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Quantum Chromodynamics (QCD)
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Quantum Chromodynamics (QCD)
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Quantum Chromodynamics (QCD)
● The previous results for R are based on the leading order 

calculation and change when interpreted in the context of QCD:
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Experimental tests of the Standard Model
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Experimental tests of the Standard Model
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Experimental tests of the Standard Model



                                                                          MAP-Fis, FEPA, 2020 34

Experimental tests of the Standard Model
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Experimental tests of the Standard Model
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Experimental tests of the Standard Model
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International Linear Collider
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Experimental tests of the Standard Model
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Experimental tests of the Standard Model
● What about direct searches for the Higgs boson?
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Experimental
Particle and

Astroparticle Physics

Neutrinos,
Multimessengers...
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Neutrino and the New Physics
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Neutrino and the New Physics

4545

Super-KamiokandeSuper-Kamiokande
11 stores high
1,000 meters underground
50,000 tons of water
22,500 tons fiducial volume
11,200 photomultipliers
0.5 meter photomultiplier diameter
 (old copper and zinc mine)
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Neutrino and the New Physics
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Neutrino and the New Physics
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Neutrino and the New Physics
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Neutrino and the New Physics
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Neutrino and the New Physics



Some open questions in neutrino astrophysics 
• Why we do not have a “neutrino map”?

• Correlation with UHECRs and Neutrinos

• About Galactic sources

• Detecting extragalactic sources

Extragalactic objects
• Gamma-ray bursts and consequences

• Fast Radio Bursts

The multimessenger role of Gravitational waves
• Importance for particle physics

• Importance for cosmology

• Importance for astrophysics

Few, selected topics 
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Neutrino Sources

• Flux of neutrinos at the 
surface of the Earth. 

• The three arrows near the x-
axis indicate the energy 
thresholds for CC production 
of the charged lepton 
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1) Open questions for neutrino astrophysics 

CR

e - e+


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1) Open questions for neutrino astrophysics 

• Origin of IceCube's HE astrophysical neutrinos?

• Evidence of galactic “TeVatron” from g-rays (e, p or both?).  But, for p 
and nuclei, no “LHC” o “PeVatrons” observed 

• Neutrino: fundamental probe to identify galactic and extragalactic CR 
sources 

• Disentangle astrophysical models with multimessenger observations: 
i.e., GRBs with GW, HEN and traditional astronomy (useful also in case 
of no n observation)

• Production mechanisms of high energy cosmic particles (jets?)

• Study of galactic (and extragalactic?) propagation of CR, with 
neutrinos as tracers

• Test the neutrino sector of the SM and BSM physics
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Detecting cosmic neutrinos: a threefold way 

2. Point-like events, significant excess in the sky map. 
Measurement of the neutrino direction

3. Coincident event in a restricted time/direction windows with 
EM/g/GW counterparts. Relaxed energy/direction measurement 
+ transient/ multimessenger information
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1. Excess of HE neutrinos over 
the background of 
atmospheric events. 
Measurement of the          n   
energy



Cosmic rays and atmospheric neutrinos
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CR

CR



 About ExtraGalactic sources

• GW

• FRBs

• GRBs
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GW

?
Bartos+ 2016

CR

GWFRB 150215

GRB



Gamma Ray Bursts (GRBs)
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BATSE
on CGRO

• Until 20 y ago, GRBs were the first unknown in HE astronomy. 
• They were discovered serendipitously in the late 1960s by U.S. military satellites looking 

for Soviet nuclear testing in violation of the atmospheric nuclear test ban treaty. 

• These satellites carried g-ray detectors since a nuclear 
explosion produces g-rays. 

• GRBs are short-lived bursts 
of g-rays. 

• At least some of them are 
associated with a special type 
of Sne; 

• GRBs shine hundreds of 
times brighter than a typical 
SN, making them the 
brightest source of g-rays in 
the observable Universe. 



Breaking news

59(see J. Zornoza)



3) The multimessenger role of GWs waves
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GW



EM vs Gravitational waves

• The EM radiation emitted is an incoherent 
superposition from sources >> l; 

• GW radiation comes from systems with 
sizes R <<  l. Hence, the signal reflects the 
coherent motion of extremely massive 
objects.

• Effect of EM radiation falls as 1/r2 
(intensity). GWs as 1/r  (phase) .

• GWs suffer a very small absorption when 
passing through ordinary matter. 

• Experimental methods complementary to 
that developed in particle physics  and 
traditional astronomy

• The observables contain direct 
information on mass, distance, spin
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GW

(Remember) 



The role of Gravitational waves

•BH+BH = 
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GW





The most wanted object: NS+NS (NS+BH)

• A rich variety of phenomena in the case of NS-NS merging

•             standard “sirene”

• Neutrinos

• EM counterpart
• Fast emission (GRB)

• Beamed emission

• Afterglow (X-ray,…)

• Kilonova (*)

• Isotropic emission

• Neutron-rich ejecta

• Radio emission 

• UHECR’s acceleration?

GW



(*) By radioactive decay of heavy elements produce via r-process nucleosynthesis in the 
neutron-rich merger ejecta
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GW



NS + NS = 

• The GW signal was the input for the 
EM follow-up

• A simultaneous short GRB was 
observed by FERMI-GBM and 
INTEGRAL satellites. Alone, these 
signals are not sufficient to trigger EM 
position (position not known)

• The network of GW observatories can 
provide directionality information on 
the event position

• The observation of a coincident 
neutrino can provide directionality 
information as well

• In addition, n’s can provide additional 
info on the acceleration mechanism 

• The key of the success: we know the 
kinematics of the merging objects, and 
the energy loss in GW
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 GW



Conclusions

• Multi-messenger is a born field

• Combine the information from traditional astronomy, g-rays, charged cosmic-rays, 
neutrinos and gravitational waves

• Use information from instruments (close) to the technology limits

• New instruments:
• SKA (radio), Webb (IR), CTA (TeV)

• aLIGO, adVIRGO: Astrophysics with GW signals

• Neutrino telescopes with multi-km3 effective volumes

• Different opportunities for particle physics 
• Dark matter searches

• Mass of the neutrino

• Propagation of neutral particle (Transparency of the Universe)

• Energy of the vacuum - axions; 

• Tests of Lorentz Invariance; Quantum gravity (space time structure of vacuum) 

• …

• cosmology 
• Alternative measurement of the cosmological parameters

• and astrophysics
• Sources of Galactic CRs

• Origin on cosmic neutrinos observed by IceCube

• Origin and type of UHECRs

• …
65

CR GW
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