

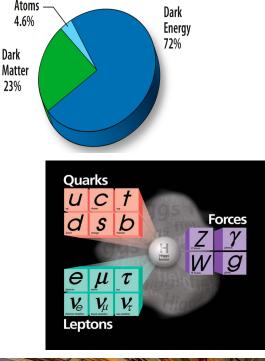
Introduction to the **Big Data** challenges at LHC

Farida Fassi

Mohammed V University in Rabat, Morocco

Why High Energy Physics e-Science?

- CERN is the European Organization founded in 1954 for Particle Physics
 Research in Geneva. Particle accelerators for High Energy Physics research.
- Large Hadron Collider (LHC) is the largest and most powerful particle accelerator ever built.
- Data volumes at the LHC
 - wup to 40 million collisions/second (MHz)
 1-1.5 MB/data per collision
 40 MHz * 1 MB = 40 TB/s
- High Energy Physics (HEP) uses immense data sets that require the computational Grids infrastructure deployed in the framework of the Worldwide LHC Computing Grid (WLCG).

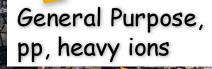


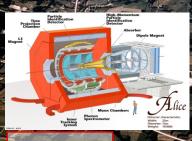
Why LHC? Fundamental questions of Particle Physics...

- Astrophysics/cosmological measurements show that only 4% of the matter is known.
- This tiny fraction of matter is well described by the "Stardard Model" (SM) of Particle Physics.
- LHC major goal is to provide an experimental verification
- of different theories within Particle Physics and HEP:
 - What is the dark matter in the Universe?
 - Unification of fundamental forces?
 - 💠 Understanding space time matter versus antimatter.
 - How to explain that particles have mass?

Precise measurement of the Higgs boson.

- The LHC is contained in a circular tunnel 27 km in circumference. LHC accelerates and collides beams of:
 - Protons and atomic nuclei

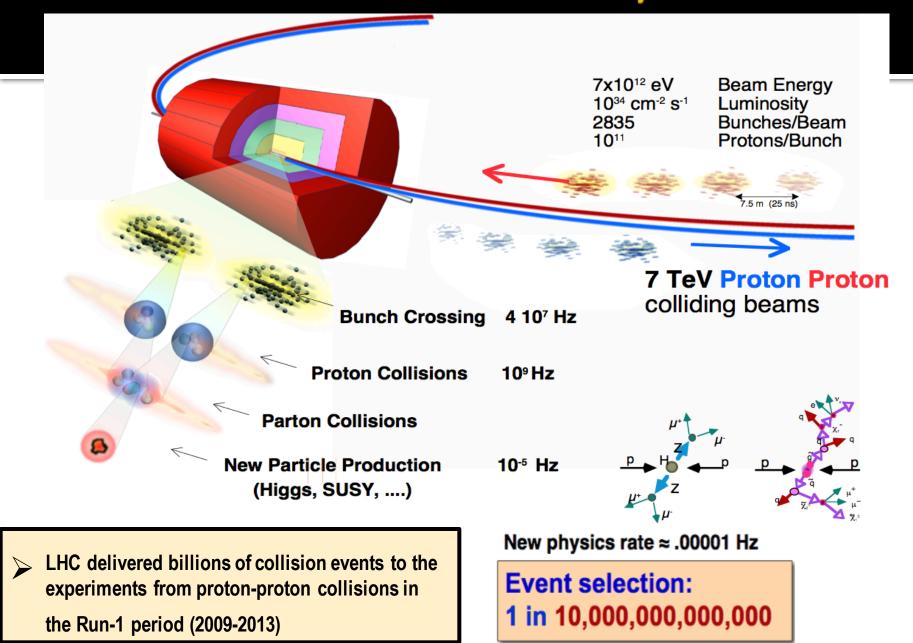


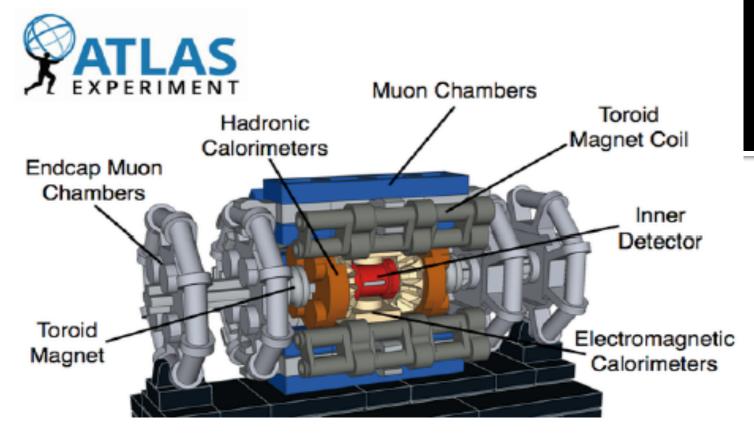

The Experiments at the LHC

pp, B-Physics, CP-Violation (matter-antimatter symmetry)

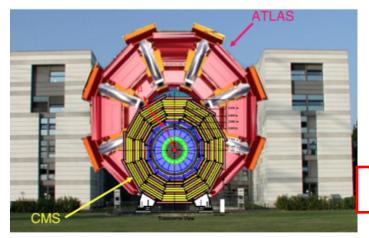
LHC-B

ATLAS



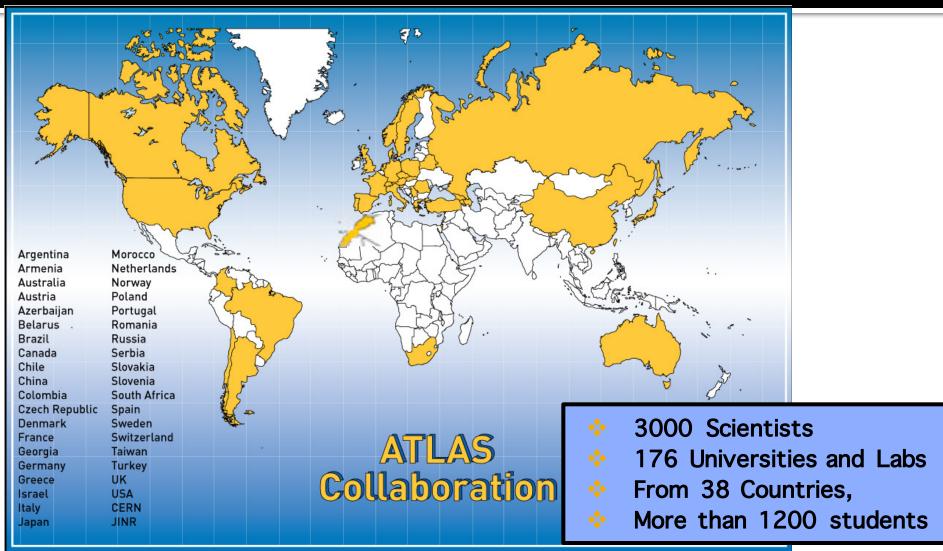

LHC

ALICE


Heavy ions, pp (state of matter of early universe)

Collisions at the LHC: summary

Scale of ATLAS and CMS



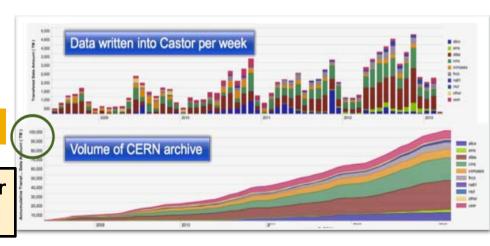
ATLAS (general purpose detector)

- Length: 44 m, diameter: 25 m
- Mass: ~7.0 ktons
- Two magnet fields:
 - Solenoid (ID): 2 T
 - Toroid (Muon System): 2-8 Tm

✤ ATLAS superimposed to a CERN 5-storey building

HEP e-Science more and more global

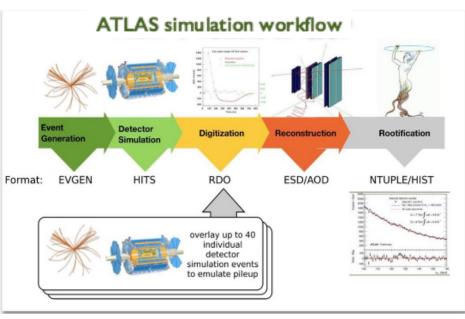
LHC Big Data challenge...



- Over 100 PB of data recorded.
- Several 100 PB more storage needed for data replication, simulation and Analysis derivation.
- Enormous challenge for the experiments for data collection, storage and processing

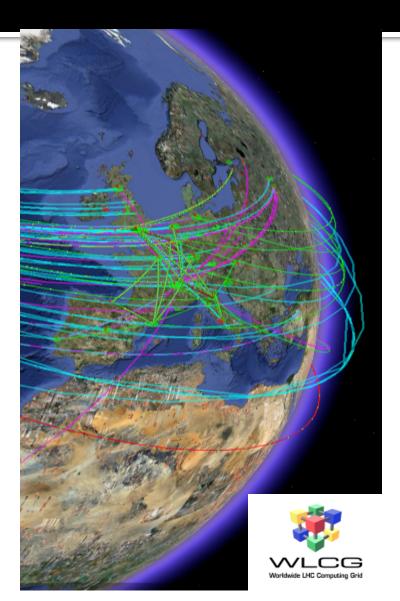
What is this data?

- read-out of o(100M) detector channels
- 💠 150 Million sensors deliver data
 - 40 Million times per second
- Raw data rate from LHC detector: 1PB/s
- This translates to Petabytes of data recorded world-wide (Grid)


Grid Computing is a critical tool to address the Big Data processing challenge and produce timely physics results...then success of LHC scientific program!!!

⇒ee event

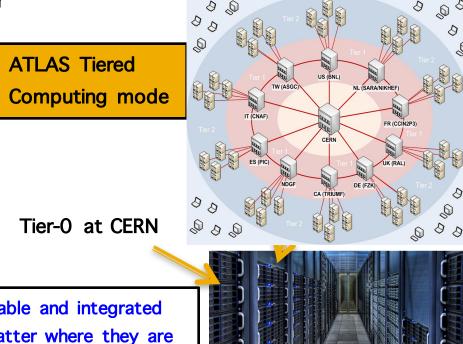
HEP Analysis Model: Detector Simulation


- The Raw data collected from the LHC is only part of the bigger data picture.
- MonteCarlo Simulation models the evolution of physics processes from collision to digital signals using knowledge from theory and test data.
- Translate theoretical models into detector observations.
- Proper treatment of background estimation and sources of systematic errors.
- ✤ 10 billion events simulated by ATLAS to date

 Data-driven analysis compares (at statistical level) reconstructed events from real data with those predicted by simulation.

Comparable storage and processing requirements to Raw data

Data management



The Worldwide LHC Computing Grid (WLCG): Solution to LHC Big Data challenge...

- WLCG is a global distributed computing Infrastructure, based on the Grid technologies.
- WLCG provides seamless access to computing power and data storage capacity distributed over the globe.
- Computer centres worldwide arranged in a Tier structure.

Tier	Sites	Role	Example
0	I	Central Facility for data processing	CERN
I	12	Regional computing centres with high quality of service, 24/7 operations, large storage and compute resources	RAL
2	140	Computing centres within a regional cloud used primarily for data analysis and simulation	Edinburgh (ECDF)

The main goal is to make use of the resources available and integrated into a single infrastructure accessible by all LHC, no matter where they are

From Big Data to Physics Discovery

Híggs boson ís a major scientífic discovery

Hard and the second sec

Higgs and the holy grail of physics

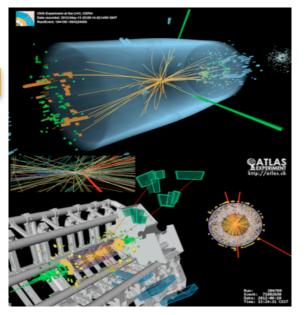
Zenith Bank... In your best intere

Wednesday, July 4, in Weyrin, Siritzerland. Isit re-July 30, 20

CNN 🚱

t really #NBCfail?

Global Effort → Global Success


Results today only possible due to extraordinary performance of accelerators – experiments – Grid computing

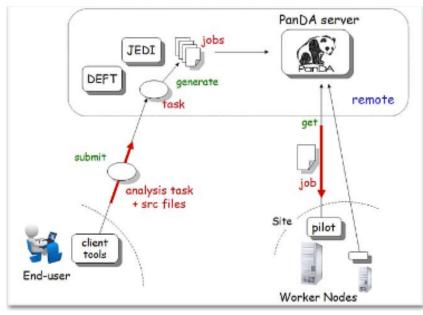
Observation of a new particle consistent with a Higgs Boson (but which one...?)

Historic Milestone but only the beginning

Global Implications for the future

Gríd computing enables the rapid delivery of physics results

Distributed Data Processing system And, Distributed Data Management system


Production and Distributed Analysis system

- Production and Distributed Analysis system (PanDA) is the Workload Management System (WMS) to run jobs on Grid.
 - PanDA is an unified system for Production and User Analysis capable of operating at LHC data processing scale.
- ATLAS Scientists use PanDA that makes distributed resources optimally accessible by all users.
- Flexibility in adapting to evolving hardware and network configurations.

How PanDA works?

- Uses a Pilot model to pull jobs from central queue once a suitable resource found.
- Pilot factories
 - continually submit jobs to available computing resources.
- The tasks are routed to sites based on the availability of relevant data and processing resources.

Data Management system

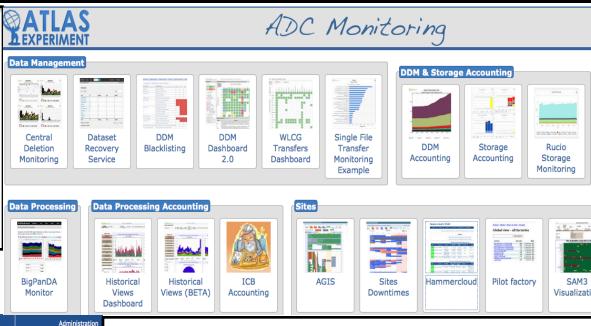
- Distributed Data Management (DDM) system designed to meet scalability, robustness, flexibility needed by ATLAS to manage the complete dataflow.
 - Rucio is the framework to manage all ATLAS data on the Grid.
 - Discover, transfer and delete data across all registered computing sites.
 - Rucio manages data replication and reduction within the lifetime range to Increase and/or reduce the number of copies based on data popularity.

ATLAS worldwide transfer volume per day

- Successful import/export data
- to Tier0+ Tiers1 sites
- ~100% efficiency

Monitoring & site validation

- The Monitoring system is critical for the success of all activities on the Grid.
- Monitoring is the key for synchronizing Distributed Operations.


Overviews

HammerCloud | ATLAS

Home

Tests

Robot

			Welcome to Ha	mmerClou	d-ATLAS.						
Running and Scheduled AFT/PFT Tests											
State	ld	Host	Template	Start (CET)	End (CET)	Sites			comp jobs		
running	20054631	it-hammercloud-submit- atlas-07	506: AFT Reco_trf 17.2.7.6 SMWZ_NTUP Panda	09/Apr, 0:16	09/Apr, 22:33	ANALY_TRIUMF, ANALY_AUSTRALIA, ANALY_SCINET, 200 more	66	85	4790	309	5290
unning	20054635	it-hammercloud-submit- atlas-07	508: AFT Reco_trf 17.2.7.6 data11 SMWZ_NTUP Panda	09/Apr, 2:36	10/Apr, 2:43	ANALY_TRIUMF, ANALY_AUSTRALIA, ANALY_SCINET, 200 more	85	55	3816	197	4188
unning	20054641	it-hammercloud-submit- atlas-02	489: PFT mc12 AtlasG4_trf 16.6.7.34	09/Apr, 11:52	10/Apr, 10:59	CA-VICTORIA-WESTGRID-T2, SFU-LCG2, TRIUMF, 174 more	105	134	712	19	1009
unning	20054643	it-hammercloud-submit- atlas-02	621: PFT mc14 Sim_tf 17.7.3.12	09/Apr, 12:12	10/Apr, 14:17	CA-VICTORIA-WESTGRID-T2, SFU-LCG2, TRIUMF, 174 more	103	157	634	60	988
unning	20054646	it-hammercloud-submit- atlas-07	571: PFT mc12 AtlasG4_trf 17.2.11.8	09/Apr, 12:44	10/Apr, 11:52	CA-VICTORIA-WESTGRID-T2, SFU-LCG2, TRIUMF, 174 more	100	130	515	33	815
unning	20054647	it-hammercloud-submit- atlas-07	505: AFT UA 17.2.7 Panda	09/Apr, 13:46	10/Apr, 14:05	ANALY_TRIUMF, ANALY_AUSTRALIA, ANALY_SCINET, 200 more	92	35	610	29	809

PanDA Dashb

More HC.

Help

End-to-end testing tool for Grid sites.
 Sites validation before receiving activities.
 Stress tests mimicking user analysis are used for automatic exclusion of sites failing the tests from brokerage.

Big improvement of success activities.

Distributed Analysis Support Team (DAST)

- > DAST provides the first contact point to help thousant of Grid users.
 - \succ DAST deals with all kind of the distributed analysis-related-issues.
 - \succ An efficient user support is crucial to get physics results fast.
 - > DAST plays a key role to solve these users-related-issues:
 - Panda-clients and Ganga,
 - > ATLAS software, Physics Analysis Tools
 - > Site service problems
 - > DDM-clients, data access at sites and data replication
 - > Monitoring system
- Two expert shifters on duty during working hours; one in the North American time zone and one in the European time zone, covering 16 hours/day.

The LHC Roadmap: the Challenge to Computing Repeats periodically...

1.1.1.1		
2009	Start of LHC - 2009: √s = 900 GeV	
2010 2011 2012	Run 1: $\sqrt{s} = 7-8$ TeV, L = 2-7 x 10 ³³ cm ⁻² s ⁻¹ Bunch spacing: 75/50/25 ns (25 ns tests 2011; 2012)	~25 fb ⁻¹
2013 2014	LHC shutdown to prepare for design energy and nominal luminosity	
2015 2016	Run 2: $\sqrt{s} = 13-14$ TeV, L = 1 x 10^{34} cm ⁻² s ⁻¹ Bunch spacing: 25 ns	>50 fb ⁻¹
2017 2018	Injector and LHC Phase-I upgrade to go to ultimate luminosity	
2019 2020 2021	Run 3: $\sqrt{s} = 14$ TeV, L = 2 x 10 ³⁴ cm ⁻² s ⁻¹ Bunch spacing: 25 ns	~300 fb ⁻¹
2022 2023	High-luminosity LHC (HL-LHC), crab cavities, lumi levelling,	
 2030	Run 4: $\sqrt{s} = 14$ TeV, L = 5 x 10 ³⁴ cm ⁻² s ⁻¹ Bunch spacing: 25 ns	~3000 fb ⁻¹
	The challenge how optimally process data and produce timely Physics results that end up in a great success as Run-1.	∫ L dt

Conclusions

- The LHC machine, the ATLAS experiment, the computing facilities behaved brilliantly during Run-1, and we have a major scientific discovery in our pocket; the Higgs Boson.
 - The LHC faces big computing challenges ahead to avoid constraining science output.
 - Computing is crucial factor for the success Physics program of the LHC experiments.
 - Lots more excitement to come in LHC

with Run-2 and beyond...