
Presenter

name
Title, Red Hat
Date

Red Hat Enterprise MRG
Messaging, Realtime, Grid

Bryan Che
bche@redhat.com

Last Updated 2/2010
MRG v1.2

About Red Hat Enterprise MRG
● Integrated platform for high

performance distributed
computing

● High speed, interoperable,
open standard Messaging

● Deterministic, low-latency
Realtime kernel

● High performance &
throughput computing Grid
scheduler for distributed
workloads and Cloud
computing

MRG Messaging
 Enterprise Messaging System that

● Implements AMQP (Advanced Message Queuing Protocol), the first open messaging
standard

● Participation from Red Hat, JPMC, Goldman, Credit Suisse, Deutsche Borse,
Barclays, Bank of America, Microsoft, Cisco, etc

● Spans all use cases in one implementation to consolidate architectural silos (fast
messaging, reliable messaging, large file transfer, publish/subscribe, eventing, etc)

● Uses Linux-specific optimizations to achieve breakthrough performance on Red Hat
Enterprise Linux and MRG Realtime

● Runs on non-Linux platforms without the full performance and quality of service benefits
that Red Hat Enterprise Linux provides

 Provides open, high performance system for everything from financial
exchanges to infrastructure management

MRG Messaging Feature Highlights
 Core Messaging

● P2P, fanout, pub-sub, async
● Reliable messaging
● Transactions -local to dtx
● Multiple clients (C++, .NET/WCF,

Java, JMS, Python, etc)

 High Performance
● C++ broker, optimized for RHEL
● O-direct AIO for high-speed durable

messaging over 500k
messages/second per LUN

● Infiniband RDMA support for ultra low
latency messaging

 Management tools
● Command line tools to Web-based

GUI
● AMQP-based framework & APIs

 Advanced Features
● Queue Semantics: Ring Queue, Last

Value Queue, TTL, Initial Value
Exchange, etc

● Routing patterns, including XML
XQuery

● Federation with dynamic routes

 High Availability
● Active-Standby/Active-Active Broker

Clustering
● Federated disaster recovery

 Security
● SASL auth
● SSL encryption
● role-based access control

What is AMQP?

An Open Standard for Middleware:
 Middleware: software that connects other software together.

Middleware connects islands of automation, both within an
enterprise and out to external systems.

Why it is different:
 A straight-forward and complete solution for business messaging
 Cost effective for pervasive deployment
 Totally open (developed in partnerships)
 Created by users and technologists(Messaging, OS, and

Network) working together
 Made to satisfy real needs (needs to also provide things like IVQ,

LVQ, Replay, ...)

AMQP = Internet Protocol for Business Messaging

The AMQP Model

The AMQP Architecture specifies modular components and
rules as the building blocks

Exchanges
● The “Exchange” receives messages from publisher

applications and routes these to queues, based on
arbitrary criteria—typically topic & message headers

Queues
● The “Queue” stores messages until they can be

safely processed by a consumer application (or
multiple applications)

Bindings
● The “Binding” defines the relationship between a

queue and an exchange and provides the message
routing criteria

Sample AMQP Exchanges

A Simple Example

A

#!/usr/bin/env python
from qpid.connection import Connection
from qpid.util import connect
from qpid.datatypes import uuid4, Message
connect to the server and start a session
conn = Connection(connect("127.0.0.1", 5672))
conn.start()
ssn = conn.session(str(uuid4()))
create a queue
 ssn.queue_declare("test­queue")
publish a message
dp = ssn.delivery_properties(routing_key="test­queue")
mp = ssn.message_properties(content_type="text/plain")
msg = Message(dp, "Hello World!")
ssn.message_transfer(message=msg)

s

subscribe to a queue
ssn.message_subscribe(queue="test­queue",
destination="messages")
incoming = ssn.incoming("messages")
start incoming message flow
incoming.start()
grab a message from the queue
print incoming.get(timeout=10)
cancel the subscription and close the session and
connection
ssn.message_cancel(destination="messages")
ssn.close()
conn.close()

MRG Queue Semantics
 MRG Messaging provides queue semantics so that many capabilities

people previously had to build on top of messaging software are now
included directly in MRG

 Ring Queue: Queue with a configurable depth and ring buffer that will
override the oldest messages as the buffer fills

 Last Value Queue: Queue that will update in-place messages that have
not been consumed and have stale data with newer messages that have
updated data
● For example, useful for stock ticker symbols, when you just want the

latest value
 Initial Value: Cache the last message in an exchange so that a late-

binding queue or client can get an initial value even if the queue is empty
 Time To Live (TTL): Set a configurable Time To Live so that late-joining

clients can get a replay window
 Global Sequencing: The broker sequences messages to provide a

global ID

Clustering and Federation
 Active/Active Clustering provides

scalability and enhanced load-
balancing

● Producers and consumers can be
connected to any broker in the cluster

● based on RHEL5 OpenAIS
technology

 Federation provides geographical
distribution of brokers and
Disaster Recovery

● configured via links and routes

● link: connection between two brokers
that allows messages to be passed
between them

● route: path that messages take from
one broker to another; can run along
one or more links to the final
destination. Routes can be dynamic
or static

MRG Messaging Security
 Simple Authentication and Security Layer (SASL) security layer

● identifies and authorizes connections to the broker

● multiple authentication methods

● full SASL support in broker; SASL PLAIN for clients

 Multiple users support

 Role-based access control

● based on plain text files

 SSL encryption

 HP BL460c G6
Intel(R)
Xeon(R) CPU
X5570

 2.93 GHz, 8MB
L3 cache,
95W,

 Memory Type
DDR3-1333,
HT, Turbo
2/2/3/3)

 Memory
24GB(6x4GB)

 Infiniband 4X
QDR IB Dual-
port Mezzanine

 Infiniband
Switch BLc
4X QDR IB
Switch

1 Node Nehalem

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1800000

MRG Messaging Throughput Test on HP BL460c G6 Inf iniband

8 Bytes
16 Bytes
32 bytes
64 Bytes
128 Bytes
256 Bytes
512 Bytes
1024 BytesM

e
ss

a
g

e
s/

S
e

c

MRG Messaging Infiniband Throughput:
>1.5 Million Reliable Messages/Second per System

MRG Messaging Infiniband RDMA Latency:
Under 40 Microseconds Reliably Acknowledged

1
3

5
7

9
11

13
15

17
19

21
23

25
27

29
31

33
35

37
39

41
43

45
47

49
51

53
55

57
59

61
63

65
67

69
71

73
75

77
79

81
83

85
87

89
91

93
95

97
99

0.0340

0.0360

0.0380

0.0400

0.0420

0.0440

0.0460

0.0480

MRG Messaging Latency Test on HP BL460c G6 Inf iniband

100K Message Rate

32 Bytes RDMA Nehalem
256 Bytes RDMA Nehalem
1024 Bytes RDMA Nehalem

A
ve

ra
g

e
 L

a
te

n
cy

 (
m

s)

MRG Messaging on KVM Virtualized Performance:
Over 1 million Messages/Second Throughput

16 32 64 128 256 512 1024 2048 4096

0

200000

400000

600000

800000

1000000

1200000

0

100

200

300

400

500

600

700

800

900

1046081 1023869

902689 880965

804045

741297

555465

369145

210634

RHEL 5.4 KVM AMQP 2-Guest

Dell Poweredge R710 Intel Nehalem, 2 10Gbit VT-d

Msg/sec
Throughput MB/sec

Msg Size (bytes)

M
es

sa
ge

s
/

S
ec

MRG Messaging on KVM Virtualized Performance:
<200 Microsecond Latency, Reliably Acknowledged

Ave Lat (milsec)
2

4
6

8
10

12
14

16
18

20
22

24
26

28
30

32
34

36
38

40
42

44
46

48
50

52
54

56
58

60

0.000

0.050

0.100

0.150

0.200

0.250

RHEL5.4 KVM AMQP Messaging Perf

Dell Poweredge R710 Intel Nehalem, 2 10Gbit VT-d

Bare Metal
KVM vtd
KVM novtd

(Samples of 10k messages)

La
te

nc
y

in
 M

ili
se

co
nd

s

 Comparing Latency/CPU per technology

1-GigE 10-GigE IPoIB IB SDP IB RDMA

0.000

0.020

0.040

0.060

0.080

0.100

0.120

0.140

0.160

256-Byte Latency

La
te

nc
y

(m
s)

1-GigE 10-GigE IPoIB IB SDP IB RDMA

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Throughput CPU Usage

idle
system
user

All measurements are between 3 peers (brokered) and fully reliable

Legacy Test: MRG/Intel Throughput Test Setup
 Intel 2x Quad-Core Xeon

systems with 1GB ethernet
● Intel Xeon 5300 series SUT

● 2x X5365 (Quad cores), 3.00
Ghz,

● 8 GB RAM
● FSB 1333

● Intel Xeon 5400 series SUT
● 2x X5482 (Quad cores), 3.20

Ghz,
● 8 GB RAM
● FSB 1600

 256-byte messages
 Fanout to 60 clients on two

client systems from one broker
 10 shared queues

Throughput Results

 760,000+ ingress messages/sec on Xeon 5482
 Equivalent to

● 6,080,000 ingress OPRA messages/ second
● 2,432,000 fully reliable OPRA messages per second

MRG Messaging Durable Messaging Throughput

1
3

5
7

9
11

13
15

17
19

21
23

25
27

29
31

33
35

37
39

41
43

45
47

49
51

53
55

57
59

61
63

65
67

69
71

73
75

77
79

81
83

85
87

89
91

93
95

97
99

0

100000

200000

300000

400000

500000

600000

700000

MRG Durable Messaging Throughput Across Dif f erent Storage Types

1 NIC
1 NIC Durable IO Fusion Card
1 NIC Durable Fiber Disk
1 NIC Durable Internal SCSI drive

M
e

ss
a

g
e

 R
a

te

Intel 16 CPU Hapertown
12GB memory 667 Memory speed
Intel 82571EB Gigabit Ethernet
HP IO Fusion
32-byte messages

MRG Messaging Durable Messaging Latency

1
3

5
7

9
11

13
15

17
19

21
23

25
27

29
31

33
35

37
39

41
43

45
47

49
51

53
55

57
59

61
63

65
67

69
71

73
75

77
79

81
83

85
87

89
91

93
95

97
99

0.000

0.200

0.400

0.600

0.800

1.000

1.200

1.400

Latencytest with Durable Store Dif ferent Storage Types

1 NIC No Durable
1 NIC Iofusion Durable
1 NIC Fiber on durable
1 NIC Sata Durable

A
ve

ra
g

e
 L

a
te

n
cy

 (
m

s)

Intel 16 CPU Hapertown
12GB memory 667 Memory speed
Intel 82571EB Gigabit Ethernet
HP IO Fusion
32-byte messages

MRG Realtime
 Enables applications and

transactions to run predictably,
with guaranteed response times

● Provides microsecond accuracy

 Provides competitive advantage &
meets SLA's

● Travel web site: missed booking
● Program trading: missed trades
● Command & Control: life & death

 Upgrades RHEL 5 to realtime OS
● Provides replacement kernel

for RHEL 5; x86/x86_64
● Preserves RHEL Application

Compatibility
 Red Hat Leads Upstream Linux

Realtime Development
● maintainer, wrote 90% of code base

MRG Realtime Scheduling Latency

Vanilla

• Min: 1

• Max: 2857

• Mean: 11.47

• Mode: 9.00

• Median: 9.00

• Std. Deviation: 54.94

MRG RT

• Min: 4

• Max: 43

• Mean: 8.34

• Mode: 8.00

• Median: 8.00

• Std. Deviation: 1.49

MRG Realtime Throughput

Realtime exchanges ~10% throughput for better deterministic latency

MRG Realtime Kernel Features
 Preemption

 Interrupts not turned off for almost all operations
 threaded interrupt handlers

 Most locks converted to rt_mutex
 priority inheritance *
 Spinlocks can sleep

 high-resolution timers *
 Performance optimizations like Virtual Dynamic Shared Object (VDSO)

gettimeofday
 Completely Fair Scheduler (CFS) *
 Read-Copy-Update (RCU) *
 Ftrace tracing infrastructure *

* now in upstream kernel

MRG Realtime Preserves RHEL 5
Application Compatibility

 MRG Realtime uses the existing RHEL5 C library with no changes
 APIs to access timers, get/set scheduler policies, lock memory and

many others have been around for years
 gettimeofday()
 clock_gettime()
 sched_setsched()
 mlockall()

 What changed is the underlying kernel code
 Note that you don't have to have an RT kernel for these APIs to work

 Need RT kernel for them to work well

MRG Realtime Tools
 TUNA: System Tuning Tool

● Dynamically control tuning parameters like
process affinity, parent & threads, scheduling
policy, device IRQ priorities, etc.

 FTrace: Latency Tracer
● Runtime trace capture of longest latency

codepaths – both kernel and application. Peak
detector

● Selectable triggers for threshold tracing
● Detailed kernel profiles based on latency

triggers

 RTEval: Hardware Latency Detector
● Tool that finds hardware latencies in your

system so that you can achieve low latency
across your entire platform

● Complements MRG Realtime hardware
certification program

 Existing standard RHEL5 based
performance monitoring tools remain
relevant

Realtime Java With MRG Realtime

 Standard Java deployments
typically have highly
undeterministic performance—
especially because of garbage
collection

 JSR 1 provides a realtime
specification for Java and
realtime JVMs

● Requires an underlying realtime
operating system to provide
priority inheritance and preemption
—like realtime Linux!

● Provides deterministic garbage
collection, realtime threads, and
deterministic performance

 Red Hat has partnered with
IBM and Sun to certify their
Realtime JVMs for MRG
Realtime

Red Hat and IBM have partnered to deliver
Realtime Java on Realtime Linux
for the US Navy DDG 1000 Zumwalt
Class Destroyer Program

Hardware Matters

 Hardware can have a big effect on
realtime performance

 Hardware drivers may need to be
updated to handle threaded
interrupts

 Many system BIOS's include
System Management Interrupts
(SMIs)

● Cause non-deterministic latency
beneath the operation system by taking
CPU cycles for things like power
management, administration

● SMI latencies cannot be resolved by
realtime linux—they require the
hardware OEM to remove SMIs or
make them configurable

 Red Hat has worked with OEMs to
certify systems for MRG Realtime

●

SMI latencies on untuned system

How to Develop for MRG Realtime

 Use POSIX threads

● finer grained applications mean more parallelism, so can take advantage of
multiple cores

 Use POSIX threads synchronization mechanisms

● Mutexes

● Barriers

● Condition variables

 Set appropriate priorities for your threads

● Any SCHED_FIFO thread is higher priority than any SCHED_OTHER thread

● ensure that your high priority threads don't hog the processor

How to Deploy MRG Realtime
 Tune your system!

● No two applications behave the same

● use tuna to tweak priorities and affinities

● use oprofile to find application hotspots

● use ftrace to find long latency areas

 Dedicate processors to your application threads

● Use tuna or taskset to bind threads to specific processors and move other
threads off

● 4-way and 8-way processors getting cheaper

 Use cpu affinity field in /proc/irqs/<n>/smp_affinity to bind interrupts
to specific processors

● tuna can do this easily

MRG Grid
 Provides leading High Performance & High Throughput Computing

● Brings advantages of scale-out and flexible deployment to any application or
workload

● Delivers better asset utilization, allowing applications to take advantage of all
available computing resources

● Handles “Holiday Rushes”

 Enables building cloud infrastructure and aggregating multiple clouds
● Integrated support for virtualization as well as public clouds
● Seamlessly aggregates multiple cloud resources into one compute pool

 Provides seamless and flexible computing across:
● Local grids
● Remote grids
● Private and hybrid clouds
● Public clouds (Amazon EC2)
● Cycle-harvesting from desktop PCs

MRG Grid is Based on Condor
 MRG Grid is based on the Condor Project created and hosted by the

University of Wisconsin, Madison

 Condor has a >20-year history and runs many of the largest grids in
the world

 Red Hat and the University of Wisconsin have signed a strategic
partnership around Condor:

● University of Wisconsin makes Condor source code available under OSI-
approved open source license

● Red Hat & University of Wisconsin jointly fund and staff Condor development on-
campus at the University of Wisconsin

 Red Hat and the University of Wisconsin's partnership will:

● Add enhanced enterprise features, management, and supportability to Condor
and MRG Grid

● Add High Throughput Computing capabilities to Linux

Red Hat Additions To Condor Include:
● Enterprise Supportability

● Break out Condor from statically-
linked blob to multiple well-
maintained and individually
patchable rpm's

● Web-Based Management
Console

● Unified management across all of
MRG for job, system, license
management, and workload
management/monitoring

● Low Latency Scheduling
● Enable job submission to Condor via

AMQP Messaging clients
● Enable sub-second, low-latency

scheduling for sub-second jobs
● Back MS Excel calculations with a

grid via MRG C# client

● Virtualization Support via libvirt
Integration
● Support scheduling of virtual machines on

Linux using libvirt API's

● Cloud Integration with Amazon Ec2
● Enable automatic cloud provisioning,

job submission, results storage,
teardown via Condor scheduler

● Runs as a job, so it can be a
dependency for other jobs or executed
based on rules (e.g. add capacity in in
the cloud if local grid out of capacity)

● Concurrency Limits
● Set limits on how much of a certain

resource (e.g. software licenses, db
connections) can be used at once

● Dynamic Slots
● Mark slots as partitionable and sub-

divide them dynamically so that more
than one job can occupy a slot at once

Other MRG Grid Features Include:
 Desktop Cycle-Harvesting - Desktop

cycle-harvesting allows you to leverage the
unused capacity of desktops to add
processing power to your grid.

 ClassAds - A flexible language for policy
and meta-data description.

 Policies - Flexible, customizable policies
specified by jobs and resources via
ClassAds.

 Federated Grids/Clusters - A mechanism
known as flocking allows independent
pools to use each others' resources,
controllable by customizable policies.

 Multiple Standards-Based APIs - Web
Service interface provides job submission
and management functionality; CLI
provides a highly scriptable, with
consistent output, interface to all
functionality.

 Workflow Management - The ability to
specify job dependencies, via DAGMan,
allows for construction and execution of
complex workflows.

 Compute On-Demand (COD) - The ability
for a node or set of nodes to be claimed by
a user in such a way that others may use
the claimed nodes until the user needs
them.

 High Availability - The Negotiator and
Collector, via HAD, and the Schedd, via
Schedd Fail-over, can have their state
replicated to allow for graceful fail-over
upon service disruption.

 Dynamic Pool Creation - Through a
technology known as Glide-ins, nodes can
be dynamically added to a pool to service
user jobs.

 Priority Based Scheduling (including fair
share)

 Parallel Universe – run parallel (including
MPI) jobs. Co-allocation of compute
nodes is done automatically.

 Accounting - User and group resource
utilization is tracked and accessible to
administrators.

 And much more...

Cloud Computing with MRG
 Cloud computing is a hot topic, but many

people have important questions and
challenges they need addressed before they
can adopt cloud:

● How do I build an internal cloud?

● How do I avoid lock-in to a single cloud?

● How do I mix, match, and blend different cloud
resources—including internal and external clouds?

● How do I manage a variety of applications and
groups with different SLAs, priorities, and resource
requirements across clouds?

● How do I manage and track cloud resources?

 Red Hat Enterprise MRG provides solutions
to all these issues

Building Clouds with MRG
 Scalable Virtualization

● Schedule VMs directly as jobs via
libvirt

● Provision VMs via Red Hat
Enterprise Virtualization

● Inject jobs into VMs

 Resource Accounting

● Track resources via Condor's
resource accounting

 SLA's

● Apply priorities and policies

● Apply security – Authentication
(e.g. SSL, …), Integrity, Encryption

 Powerful Policies

● VMs – run multiple concurrent
instances, start on Black Friday or
semi-monthly, re-run after fault

● Machines – only run VMs from
owner’s group between 9 and 5,
everyone else has a low priority
shot from 5 to 9

● Global – control limiters (e.g. NFS
mount users, licenses),

 Various Cloud Services

● IaaS clouds: run all workloads as
VMs

● PaaS clouds: leverage job
scheduling with VM scheduling

Aggregating and Bridging Clouds with
MRG
 MRG includes the ability to schedule jobs and applications to

multiple clouds, based on policy

● MRG has the ability to send VMs to other resource managers

● MRG becomes the unified interface to many types of resources – internal VM
resources and multiple external clouds

● MRG's life-cycle management, accounting and policy benefits still available

 Use cases include

● Manage overflow/spillover

● Access to specialized resource managers

● Transformation between VM types/systems

● Allow a single app/stack to bridge multiple clouds

MRG Cloud Aggregation Architecture
 Schedd accepts jobs over

SOAP, AMQP, CLI

 GAHP: Grid ASCII Helper
Protocol

● An adapter to an external resource
manager

● Exist for many batch systems

● Exists for EC2-like resource
managers

● Extensible to new resource
managers

 Job Router transforms types,
e.g. stack to VM to EC2 AMI

Submit Node

gridman
ager

*-
gah
p

sche
dd

dcloud-
gahp

= Process Spawned

ec2-
gahp

= Communication

Amazon EC2job
router

EC2, RHEV,
VMWare,
Racspace,
etc.

Cloud Computing with MRG
Demo Video

http://www.youtube.com/watch?v=oSm7Ff8kKjk

http://www.youtube.com/watch?v=oSm7Ff8kKjk

MRG Grid Architecture Components

Execute Node

Central Manager

Submit Node

startd

starter

schedd

shadow

collector negotiator

Slots

Execute Node

startd

starter
Slots

Master

Master

Master

Master

 Central Manager: Schedules
Jobs

● collector: collects info about pool
status

● negotiator: responsible for match-
making. Informs submit nodes
about execute nodes & vice-versa

 Submit Node: Submit Jobs

● schedd: schedules jobs and stores
in job queue

● shadow: spawned to manage jobs

 Execute Node: Executes Jobs

● startd: enforces policies, spawns
job to starter

● starter: process that spawns
remote job and sends statistics to
submitter

 Master Daemon manages other
daemons

1 Advertising

2 Matchmaking

3 Execution

Low Latency Scheduling

Execute Node

Job
Queue

Slots
HooksHooks

carod
Reply
Queue

Job
Message

Exchange
Using MRG
Messaging

*MRG Components in Red

Job
ResultsJob

Submission

Message body is an
uncompressed zip

file with files needed
to run job

MRG Platform's Integrated Benefits
 Deterministic, low-latency messaging

● Messaging and Realtime together provide
deterministic, low-latency messaging

 Workload scheduling from reliable sub-
second to long-running batch jobs, from
small to large-scale

● Grid scheduling via Realtime Messaging enables
low-latency scheduling with high scalability

 Interoperability
● AMQP provides full interoperability with an entire

ecosystem (software and hardware) from stand-
alone messaging to the grid

 Simplified software stack and flexible
architecture

● MRG provides one integrated platform to replace
layers of specialized, incompatible point products

 Integrated management
● MRG provides a unified management system built

on MRG Messaging

QMF: AMQP Messaging-Based Management
 Red Hat Enterprise MRG's entire

management/monitoring system is
AMQP messaging-based

● Asymmetric, Efficient, Scalable, and
Secure

● Any messaging client can manage

 QMF: AMQP Messaging-Based
Management Framework

● Agent-defined management model (self-
describing)

● Objects (properties, statistics, and
methods/controls), Events

● Ease of development and extensibility

AMQP
Network

AMQP
Network

qmf
agent

grid component

procfs/dbus

syslog

Managed
Component

Managed
Component

CLI UtilityCLI Utility

agent

console

Console
Server

Console
Server Event

Storage

Event
Storage

Managed
Component

Managed
Component Agent

Adapter

Agent
Adapter

dbus
procfs

JMX

Console
Adapter

Console
Adapter JMX

syslog

Red Hat Enterprise MRG Availability
 3 ways to buy MRG:

● Red Hat Enterprise MRG Realtime component (priced per server)

● Red Hat Enterprise MRG Messaging component (priced per CPU)

● Red Hat Enterprise MRG MRG platform (priced per CPU)

● includes messaging, realtime, and grid capabilities

 Red Hat Enterprise MRG is available on a limited basis, depending
on geography

● MRG Realtime component is available broadly worldwide

● MRG Messaging component is available in NA and Europe

● MRG Grid/Platform is available in NA

Additional Information

http://www.redhat.com/mrg

Addendum:
MRG Customer Trading System Example

MRG Customer Trading System Example

Collocated Trading Engine

MRG Trading Semantics

MRG Messaging Broker

RHEL AIS Network for
Active/Active Clustering

MRG Realtime Linux
Provides Deterministic
Low Latency

FT Cluster,
In slices

Separate
networks for
orders,
symbols etc

DR Site, via
Federation

Illustrating trading semantics
–- setting up --

–

 connection.open(host, port);
 Session session = connection.newSession();

 // Create a queue named "message_queue", and route all messages whose
 // routing key is "routing_key" to this FIFO queue.

 session.queueDeclare(arg::queue="TICKER.NYSE", arg::exclusive=false);
 session.exchangeBind(arg::exchange="amq.topic", arg::queue="TICKER.NYSE",
 arg::bindingKey="TICKER.NYSE.#");

 session.queueDeclare(arg::queue="TICKER.NASDAQ", arg::exclusive=false);
 session.exchangeBind(arg::exchange="amq.topic", arg::queue="TICKER.NASDAQ",
 arg::bindingKey="TICKER.NASDAQ.#");

 // At this point we have two FIFO Queues for NYSE & NASDAQ

 /* Fully worked example of this located in examples/tradedemo */

/

Illustrating trading semantics
–-receive latest symbols --

–

void Listener::subscribeLVQQueue(std::string queue) {
 // Declare and subscribe to the queue using the subscription manager.
 QueueOptions qo;
 qo.setOrdering(LVQ);
 std::string binding = queue + ".#";
 queue += session.getId().getName();

 session.queueDeclare(arg::queue=queue, arg::exclusive=true, arg::arguments=qo);
 session.exchangeBind(arg::exchange="amq.topic", arg::queue=queue, arg::bindingKey=binding);
 subscriptions.subscribe(*this, queue, SubscriptionSettings(FlowControl::unlimited(), ACCEPT_MODE_NONE));
}

// Then to subscribe....

 Listener listener(session);

 // Subscribe to messages on the queues we are interested in
 listener.subscribeTTLQueue("TICKER.NASDAQ");

 listener.subscribeTTLQueue("TICKER.NYSE");
 listener.subscribeLVQQueue("MRKT.NASDAQ");
 listener.subscribeLVQQueue("MRKT.NYSE");

 // Give up control and receive messages
 listener.listen();

l

Illustrating trading semantics
-- publish symbol data --

-

 Message message;

 std::string routing_key = "TICKER." + symbol;
 std::cout << "Setting routing key:" << routing_key << std::endl;
 message.getDeliveryProperties().setRoutingKey(routing_key);

 curr_price = // { update the price ... }

 message.setData(curr_price);

 // Set TTL value so that message will timeout after a period and be purged from queues
 // This also creates a REPLAY window for late joining subscribers

 message.getDeliveryProperties().setTtl(ttl_time);

 // Asynchronous transfer sends messages as quickly as possible without waiting for confirmation.
 async(session).messageTransfer(arg::content=message, arg::destination="amq.topic");

a

Illustrating trading semantics
–- example consumer --

–

[MARKET] Symbol:NASDAQ.GOOG Volume: 39350 Hi:125 Lo:113 MktCap:35796M SEQ[485]
[TICKER] Symbol:NYSE.RHT Price[20] [0] [­­]
[MARKET] Symbol:NYSE.RHT Volume: 43165 Hi:24 Lo:8 MktCap:3800M SEQ[486]
[TICKER] Symbol:NYSE.IBM Price[37] [1] [UP]
[MARKET] Symbol:NYSE.IBM Volume: 36640 Hi:53 Lo:36 MktCap:49580M SEQ[487]
[TICKER] Symbol:NASDAQ.MSFT Price[25] [1] [UP]
[MARKET] Symbol:NASDAQ.MSFT Volume: 38089 Hi:26 Lo:8 MktCap:222250M SEQ[488]
[TICKER] Symbol:NASDAQ.CSCO Price[35] [1] [UP]
[MARKET] Symbol:NASDAQ.CSCO Volume: 39998 Hi:50 Lo:34 MktCap:205100M SEQ[489]
[TICKER] Symbol:NASDAQ.YHOO Price[8] [0] [­­]
[MARKET] Symbol:NASDAQ.YHOO Volume: 38346 Hi:15 Lo:2 MktCap:11120M SEQ[490]
[TICKER] Symbol:NASDAQ.GOOG Price[114] [0] [­­]
[MARKET] Symbol:NASDAQ.GOOG Volume: 40284 Hi:125 Lo:113 MktCap:35796M SEQ[491]
[MARKET] Symbol:NYSE.RHT Volume: 43989 Hi:24 Lo:8 MktCap:4180M SEQ[492]
[TICKER] Symbol:NYSE.RHT Price[22] [2] [UP]
[MARKET] Symbol:NASDAQ.MSFT Volume: 46230 Hi:26 Lo:8 MktCap:151130M SEQ[596]
[MARKET] Symbol:NYSE.IBM Volume: 43605 Hi:53 Lo:32 MktCap:42880M SEQ[595]
[TICKER] Symbol:NASDAQ.MSFT Price[23] [2] [DOWN]
[TICKER] Symbol:NYSE.IBM Price[37] [0] [­­]
[MARKET] Symbol:NASDAQ.CSCO Volume: 47550 Hi:50 Lo:27 MktCap:158220M SEQ[597]
[MARKET] Symbol:NYSE.RHT Volume: 52990 Hi:28 Lo:8 MktCap:5320M SEQ[594]
[TICKER] Symbol:NASDAQ.CSCO Price[34] [1] [DOWN]
[TICKER] Symbol:NYSE.RHT Price[22] [0] [­­]
[MARKET] Symbol:NASDAQ.YHOO Volume: 45910 Hi:15 Lo:2 MktCap:8340M SEQ[598]
[TICKER] Symbol:NASDAQ.YHOO Price[9] [1] [UP]
[TICKER] Symbol:NYSE.IBM Price[37] [0] [­­]
[MARKET] Symbol:NASDAQ.GOOG Volume: 46082 Hi:125 Lo:111 MktCap:36110M SEQ[599]
[TICKER] Symbol:NASDAQ.GOOG Price[112] [2] [DOWN]

[

Selecting the network fabric:
Comparing Latency per technology, per CPU cost at full load.

1-GigE 10-GigE IPoIB IB SDP IB RDMA

0.000

0.020

0.040

0.060

0.080

0.100

0.120

0.140

0.160

256-Byte Latency

La
te

nc
y

(m
s)

1-GigE 10-GigE IPoIB IB SDP IB RDMA

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Throughput CPU Usage

idle
system
user

All measurements are AMQP between 3 peers (brokered) and fully reliable

1 Gig versus 10 Gig, non-RDMA

16 32 64 128 256 512 1024 2048 4096

100

200

300

400

500

600

0

200

400

600

800

1000

1200

8 17 31
57

128

185 200 208 213

AMQP Throughput - 1GigE (Broadcom - bnx2)

trans/s
MB/s

transfer size

1
0

0
0

tr
a

n
sf

e
rs

/s

16 32 64 128 256 512 1024 2048 4096

100

200

300

400

500

600

0

200

400

600

800

1000

1200

8 16
32

64

110

231

366

587

869

AMQP Throughput - 10-GigE (Chelsio - cxgb3)

tra ns /s
MB/s

t rans fe r s iz e

10
00

tr
a

ns
fe

rs
/s

Rates and Throughput for 1 & 10G -- same load for direct comaparison

1
57

113
9

17
25

33
41

49 65
73

81
89

97
105 121

129
137

145
153

161
169

177
185

193
201

209
217

225
233

241
249

257
265

273
281

289
297

305
313

0.0000

0.0100

0.0200

0.0300

0.0400

0.0500

0.0600

0.0700

0.0800

0.0900

32
64
128
256
512
RDMA-1024

50k Samples

La
te

n
cy

 (
m

s)

16 32 64 128 256 512 1024 2048 4096

100

200

300

400

500

600

0

200

400

600

800

1000

1200

8 18 31
70

129

245

449

718

964

AMQP Throughput - RDMA (Mellanox - mthca)

trans/s
MB/s

trans fe r s iz e

10
00

tra
ns

fe
rs

/s

Rates, Throughput & Latency plot

 Messaging with native RDMA transport

Dealing with other latency factors:
Impact of Realtime, SMIs, NUMA, Tuning, etc

Market Data needs good latency & required determinism,
which means each components needs to be able to
deliver. (A hardware effect will 'spot' through all the layers
for example)

 Two graphs on right show dealing with SMI's on
hardware (same box, with and without SMIs)

 Graph center below, contrasts kernel schedule latency
from RHEL to MRG-Realtime

 Image left below, MRG-tuna for setting up affinity,
memory effects etc

Swapping your transport
–- no code changes --

–

$./qpidd –help
 ...
 ­­ transport (tcp) The transport for which to return the port
 ­­ load­module (file) Specifies additional module(s) to be loaded
 ...

 ... two of these options allow for the loading of modules and setting a transport, more than one can ran
at a time

TIP: ./qpidd –load­module some_module.so –help will show the help options for the loaded module

Now we start the broker with RDMA module loaded and specified as default.

$./qpidd –load­module rdma.so –transport rdma

Note: that SSL, clustering, federation, ACL, store, XQuery routing etc can all be loaded in the same
way.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56

