

Towards CLIC feasibility <u>J.P.Delahaye for the CLIC collaboration</u>

X

Update from last presentation in Nov 2009 Progress of R&D on CLIC feasibility issues Preparation of Conceptual Design Report Conclusion

+

Aarhus University (Denmark) Ankara University (Turkey) Argonne National Laboratory (USA) Athens University (Greece) BINP (Russia) CERN CIEMAT (Spain) Cockcroft Institute (UK) ETHZurich (Switzerland) Gazi Universities (Turkey)

CLIC multi-lateral Collaboration 38 volunteer Institutes from 19 Countries

Helsinki Institute of Physics (Finland) IAP (Russia) IAP NASU (Ukraine) IHEP (China) INFN / LNF (Italy) Instituto de Fisica Corpuscular (Spain) IRFU / Saclay (France) Jefferson Lab (USA) John Adams Institute/Oxford (UK) John Adams Institute/RHUL (UK) JINR (Russia) Karlsruhe University (Germany) KEK (Japan) LAL / Orsay (France) LAPP / ESIA (France) NCP (Pakistan) North-West. Univ. Illinois (USA) Patras University (Greece) Polytech. University of Catalonia (Spain) PSI (Switzerland) RAL (UK) RRCAT / Indore (India) SLAC (USA) Thrace University (Greece) Tsinghua University (China) University of Oslo (Norway) Uppsala University (Sweden) UCSC SCIPP (USA)

4 Additional Members

- ETHZ/ Switzerland:
 - Alignment R&D
- IHEP/China:

X-band RF components developments (design and construction)

• JAI (Oxford)/UK:

- Beam instrumentation and diagnostics

- UCSC-SCIPP/USA:
 - LC detector R&D

THE COMPACT LINEAR COLLIDER (CLIC) STUDY

Objective: site independent study exploring possible extension of e⁺/e⁻ linear colliders into the Multi-TeV colliding beam energy range by developing most appropriate technology :

- $\checkmark E_{CM}$ energy range complementary to LHC => E_{CM} = 0.5- 3 TeV
- \checkmark L > few 10³⁴ cm⁻² with acceptable background & energy spread
- ✓ Affordable cost and power consumption

Physics motivation:

- Consensus supported by ICFA of Lepton Collider (precision) favored facility to complement the LHC (discovery) in future
- ✓ "Physics at the CLIC Multi-TeV Linear Collider: <u>http://clicphysics.web.cern.ch/CLICphysics/</u>

Present goals:

R&D addressing Feasibility Issues

Conceptual Design (Accelerator & Detector) with preliminary performance & cost estimations

J.P.Delahaye

http://clic-study.web.cern.ch/CLIC-Study

10 CLIC Feasibility Issues

- Two Beam Acceleration:
 - Drive beam generation
 - Beam Driven RF power generation
 - Two Beam Module
- **RF Structures:**
 - Accelerating Structures (CAS)
 - Power Production Structures (PETS)
- Ultra low beam emittance and beam sizes
 - Emittance generation & preservation during acceleration and focusing
 - Alignment and stabilisation
- **Detector**
 - Adaptation to short interval between bunches
 - Adaptation to large background at high beam collision energy
- Operation and Machine Protection System (MPS)

J.P.Delahaye

CLIC feasibility issues

Sustan	lt a m	Feasibility	Unit	Nominal
System	nem	ssue		
		Fully loaded accel effic	%	96
		Freq&Current multipl	-	2*3*4
	Drive beam	12 GHz beam current	Α	4.5*24=100
	generation	12 GHz pulse length	nsec	170
		Intensity stability	1.E-03	0.75
		Timing stability	psec	0.05
		PETS RF Power	MW	130
	Beam	PETS Pulse length	ns	170
Two Beam	Driven RF	PETS Breakdown rate	/m	< 1.10-2
Acceleration	power	PETS ON/OFF	-	@ 50Hz
	generation	Drive beam to RF efficiency	%	90%
		RF pulse shape control	%	< 0.1%
	Accelerating	Structure Acc field	MV/m	100
	Structures	Structure Pulse length	ns	240
	(CAS)	Structure Breakdown rate	/m MV/m.ns	< 3.10-7
	Two Boom	Power producton and probe beam	MV/m - ns	100 - 240
	Acceleration	acceleration in Two beam module	MeV	100/m
	Acceleration	Drive to main beams timing stability	psec	0.07
	Illtra low	Emitttance generation (H/V)	nm	550/5
	Emittances	Emittance preservation: Blow-up H/V	nm	160/15
boam	Emaances	Beam sizes at IP (H/V)	nm	40/1
emittances &	Alianment	Main Linac components	microns	15
sizes	Anginnent	Final-Doublet	microns	8
	Vertical	Quad Main Linac	nm>1 Hz	1.5
	stabilisation	Final Doublet (assuming feedbacks)	nm>4 Hz	0.2
Operation a	nd Machine	Drive Beam Power @ 2.4GeV	MW	24*3
J Protection S	Protection System (MPS) Main Beam Power @ 1.5TeV		MW	14

CTF3 completed, operating 10 months/year, under commissioning:Drive Beam Generation demonstrated

CTF3/CLEX (CLIC Experimental Area)

Test beam line (TBL) to study RF power production (1.5 TW at 12 GHz) and drive beam decelerator dynamics, stability & losses - Two Beam Test Stand to study probe beam acceleration with high fields at high frequency and the feasibility of Two Beam modules

Test Beam Line T&L

J.P.Delahaye

10 m

Progress on tests of Accelerating

Structures equipped with Damping Slots

- **3 structures no damping:** Exceeded 100 MV/m at nominal breakdown rate
- **2** structures with damping slots: Exceeded 100 MV/m (الم at larger breakdown rate Low statistics, high reprod.
- **25% reduction of perform.** by Damping Slot
- **Effect attributed to** excessive RF pulse heating
- **Nominal structure (TD24)** with reduced RF pulse heating under tests

CLIC goal: 100 MV/m loaded with BR<3 10-7/m

Fields and RF pulse heating along the Accelerating Structure

J.P.Delahaye

CLIC @ PECFA (26 - 11 - 09)

RF pulse heating mitigation in **nominal CLIC accelerating structure (TD24)**

Without Damping

With Damping

Surface magnetic field after RF design optimisation

RF structures tests schedule

28.4.2010		2010											
		Jan	Feb	Mar	Apr	Μαγ	Jun	Jul	Aug	Sept	Oct	Nov	Dez
Facility	Structure												
SLAC NLCTA	TD18_vg2.4_disk[3]												
11.4 GHz	T24vg1.7_disk [3]												
	TD24vg1.7_disk [3]												
	T18_vg2.4_disk[3]												
	T18_vg2.4_disk[6]_CERN												
	TD24 KS CERN												
SLAC ASTA	PETS 11.4 GHz												
	C10vg0.7[1]												
	PETS 11.4 GHz_ SiC											<u> </u>	
	TD18_vg2.4_disk[2]												
	T24vg1.7_disk [4]												
	TD24vg1.7_disk [4]		-										
CERN Test Stand	T24_vg1.7_disk [2]												\ge
12 GHz	TD24_vg1.7_disk [2]												
CLEX 12 GHz													
	Pets 12 GHz												
	TD24_vg1.7_disk [1]												

J.P.Delahaye

CLIC @ PECFA (26 - 11 - 09)

CERN/CLIC X-band Test-Stand (Under Construction) CERN - CEA – PSI – SLAC

J.P.Delahaye

CLIC @ PECFA (26 - 11 - 09)

High Voltage Modulator

12 GHz 50 MW Klystron SLAC XL5 (derived from NLC)

J.P.

RF Pulse Compressor (Gycom)

CLIC @ PECFA (26 - 11 - 09)

Schedule (05/2010)

!Klystron and Modulator scheduled to arrive at CERN!
 !RF components and network require new strategy and more efforts!
 ! 12 GHz power (without compression) available in July 2010!

Applications of X band accelerating structures: CArbon BOoster Therapy in Oncology (TERA) PSI/X-FEL, ELETTRA, SLAC Linac based X-FEL

Compact X-Ray (1.5 Å) FEL

Parameter	Symbol	LCLS	CXFEL	Unit
Bunch Charge	Q	250	250	pC
Electron Energy	E	14	6	GeV
Emittance	$\gamma \mathcal{E}_{x,y}$	0.4-0.6	0.4-0.5	μm
Peak Current	I_{pk}	3.0	3.0	kA
Energy Spread	σ_E / E	0.01	0.02	%
Undulator Period	λ_{u}	3	1.5	cm
Und. Parameter	K	3.5	1.9	
Mean Und. Beta	$\langle \beta \rangle$	30	8	m
Sat. Length	L _{sat}	60	30	m
Sat. Power	P _{sat}	30	10	GW
FWHM Pulse Length	ΔT	80	80	fs
Photons/Pulse	N_{γ}	2	0.7	10 ¹²

J.P.Delahaye

```
CLIC @ PECFA (26 - 11 - 09)
```


PSI-XFEL X-BAND STRUCTURE

PETS

PETS mockup for test module in the lab

PETS octants assembly

S₁=212838.222 mm²

CU-OFE octal prism with slots The internal surface area calculation was done with CATIA Engineering optimizer module.

S₂=209235.153 mm²

PETS with damping material

J.P.Delahaye

PETS ON-OFF MECHANISM

TO ACC. STRUCTURE ACTUATOR PISTON COOLING CHANNEL REFLECTOR **COMPACT COUPLER** OUTLET **COOLING INLET**

Assembly of PETS "On-Off" mechanism combined with compact coupler

J.P.Delahaye

CLIC @ PECFA (26 - 11 - 09)

27

Structure (8 octants) with "compact" couplers, Vacuum "Mini-tank", "On-off" mechanism ($t \ll off \Rightarrow 20 ms$) Cooling circuits (size for 0.5% beam loss, couplers water-cooled, bars cooled by conduction)

PETS prototype is currently under production by CIEMAT. (EUCARD

WP9.2) CLIC @ PECFA (26 - 11 - 09)

28

28

Two Beam Test Stand (TBTS) in CTF3/CLEX

All hardware installed! Beam in both lines up to end ! **Commissioning with beam: PETS 2009, Two Beam Acceleration 2010**

Test Beam Line (TBL)

- High energy-spread beam transport decelerate to 60 % beam energy
- Drive Beam stability
- Stability of RF power extraction total power in 16 PETS: 1.5 GW
- Alignment procedures

Two Beam Module tests in CTF3/CLEX CLIC < RFAM

Test module representing all module types & integrating all various components: RF structures, quadrupoles, instrumentation, alignment, stabilization, vacuum, etc. Tests without beam in 2010-11, with beam in CTF3/CLEX in 2012-13 J.P.Delanaye LLIC W FELFA (20 - 11 - U7)

QPPQPP

A A A A A A A A S S S S S S S S S

-Module type 0-

Additional to test intergirder

interconnections

Fire in CTF3 Klystron Gallery (04/03/10)

Cleaning overall gallery is in monthe delay....

in Faraday Cage

after fire

13 = bad luck?

Faraday Cage MDK13

CTF3 Klystron gallery during cleaning of corrosive products

J.P.Delahaye

Cleaning procedure

Components from each rack dismounted and identified

Dust removal from sub components

Chemical cleaning

Cleaned components waiting for reinstallation in gallery

Vacuum ovens for 2nd stage

Ovens for drying after chemical cleaning

Damaged cables

- >300 cables and ~40 HV vacuum cables in front of PFN damaged
- All cables will be repaired 4 ½ weeks estimated => until 26 May
 - complete replacement (vacuum)
 - replace damaged section with connectors at both ends
- consequence:
 - all power still disconnected in the klystron gallery => until 20 May
 - vacuum pumps off in Delay Loop, Combiner Ring + part of linac
- Main worry: testing of connections (plus cleaned electronic racks...) => bumpy start-up?

J.P.Delahaye

Updated CTF3 Schedule (six months delay)

Optics i Bunc T new se	mprovements (I Full transport to h length control FBTS initial PET CALIFES se etup when MKS	DL dispersion) CLEX (first tests) S tests tup 13 available?
PE ⁻ nomina T	TS conditioned t al power/pulse le BL PETS tests	o ength
Accel	erating structure	e Two-Beam test
condit	ioned to nomina	al power & energy
pow	er/pulse length	gain, 100MV/m
TBL	PETS	breakdown rate
studi	es mea	asurements???
(limite	ad)	Beam Loading
Meas	urement of	compensation
break	down kicks	experiment
Measu	rement of effect	of beam
load	ing on breakdov	vn rate
Test of	new PETS on-c	off scheme
IBL st	Stability studies	eleration ?
PETS	PETS no recircu	& improvements
ation	Phase stability	lation
PHIN	Operation at 5 H	z (or more)
coding	Control of beam	losses
paration	Coherent Diffrac	tion Radiation
		36

Beam driven RF Power Generation Feasibility

ltom	Feasibility	Unit	Nominal	Achieved	How	Feasibili
nem	lssue					ty
	PETS RF Power	MW	130	130	TBTS/SLAC	\checkmark
Beam	PETS Pulse length	ns	170	>170	TBTS/SLAC	\checkmark
Driven RF	PETS Breakdown rate	/m	< 1.10.7	1.2.10-6	TBTS/SLAC	2010
power	PETS ON/OFF	-	@ 50Hz	-	CTF3/TBTS	2010-11
generation	Drive beam to RF efficiency	%	90 %	-	CTF3/TBL	2010-11
	RF pulse shape control	%	< 0.1%	-	CTF3/TBTS	2010-11

- **RF** power generation by single PETS feasibility demonstrated except for breakdown rate.
- ON/OFF mechanism being built, still to be tested
- Efficient RF power extraction in multiple stages being addressed in TBL under construction for tests with beam
- Tests delayed to 2011 by CTF3 modulator fire

J.P.Delahaye

CLIC performances and energy scan

J.P.Delahaye

CLIC <

by accelerating gradient (G) tuning

Charge per bunch Q proportional to gradient G for beam stability

Luminosity recovery by beam pulse lengthening and repetition frequency

 J_{\cdot}

Conceptual Design Report

Contribution/Authors by CLIC collaborators

https://edms.cern.ch/nav/CERN-0000060014/AB-003131

3 volumes: similar to ILC CDR:

- Vol1: Executive Summary
- Vol2: The CLIC accelerator and site facilities
- Vol3: The CLIC physics and detectors including detailed value Estimate (specific contribution in vol. 2&3, summary in vol. 1)

Editorial Board for Volume 2:

H.Schmickler (chair), N.Phinney/SLAC, N.Toge/KEK, Outline defined and contributors contacted

http://indico.cern.ch/getFile.py/access?contribId=3&resId=0&materialId=0&confId=91998

Vol 3 under responsibility of LCD project (L.Linssen)

J.P.Delahaye

CDR schedule

Volume 1: Executive Summary

deadline for contributions:	late 2010
preliminary draft (without cost) ready	end 2010
draft volume 1 (without cost) ready	early 2011
volume 1 (with cost) ready	end April 2011

Volume 2: Accelerator

information to the authors	late May 2010
deadline for contributions	end September 2010
draft (without detailed cost) ready	early December 2010
volume 2 (with detailed cost) ready	end April 2011 (depending on CTF3 results)

Volume 3: Detector

volume 3 ready

end April 2011

J.P.Delahaye

CLIC Updated Schedule

	CLIC CDR and			European Strategy						
	CLIC TDP proposal				for Particle Physics				CS	
	@ CERN Council			@ CERN Council						
		2009	2010	2011	2012	2013	2014	2015	2016	2017
D&D on Fossibility Issues										
Rad on reasibility issues										
Conceptual Design & preliminar	'y cost									
P&D on Performance and Cost i	ccuoc									
Rad on Performance and Cost	ssues									
Technical design & optimised co	ost									
Engineering Optimisation&Indu	strialis.									
									1	
		Con	cept	ual			Τ	chni	cal	
	Desi			port			Desi	gn Ro	eport	
	(CDR)						(]	TDR)	?	
							Pro	oject	subn	nissio

Extremely fruitful CLIC /ILC Collaboration

- ILC for a TeV LC based on SC RF technology & CLIC extending LC into Multi-TeV range complementary.
- Common working groups on technical subjects with strong synergy between CLIC & ILC
 - making the best use of the available resources
- developing common knowledge of both designs and technologies on status, advantages, issues and prospects
- preparing together by the Linear Collider Community made up of CLIC & ILC experts:
 - proposal(s) best adapted to the future HEP requirements

Joint CLIC & ILC workshop (October 18-22 @ CERN) (IWLC10: Linear Collider Accelerator and Detectors)

Conclusion

• Novel CLIC technology to extend Linear Colliders into the Multi-TeV beam colliding energy range with promising performances and challenging parameters

- **R&D** on feasibility issues and concept of 3 TeV multi-TeV Linear collider in a Conceptual Design Report (CDR) by mid 2011
 - Ambitious Test Facilities: CTF3, ATF1,2, CESR-TA...
 - Exploration to determine LC capabilities & limitations in multi-TeV range
- Technical design phase (five to six years):
 - engineering design optimization, technological risks & cost mitigation
- Linear collider energy, luminosity and appropriate technology to be defined as the best trade-off following:
 - Physics requirements when better known from LHC/Tevatron results
 - Design performances, technology risk, power consumption and cost

Warm thanks to outstanding contributions of CLIC collaboration in the past, present and future

Close CLIC / ILC collaboration extremely beneficial for Linear Colliders in preparation for best possible future HEP facility as requested by Physics and complementary to LHC J.P.Delahaye CLIC @ PECFA (26 - 11 - 09) 45

Spares

CLIC main parameters

CLIC http://cdsweb.cern.ch/record/1132079?ln=fr http://clic-meeting.web.cern.ch/clic-meeting/clictable2007.html

Center-of-mass energy	CLIC	500 GeV	CLIC 3 TeV			
Beam parameters	Relaxed	Nominal	Relaxed	Nominal		
Accelerating structure	:	502	G			
Total (Peak 1%) luminosity	8.8(5.8)·10 ³³	2.3(1.4)-10 ³⁴	7.3(3.5)-10 ³³	5.9(2.0)·10 ³⁴		
Repetition rate (Hz)			50			
Loaded accel. gradient MV/m		80		100		
Main linac RF frequency GHz			12			
Bunch charge10 ⁹	6.8			3.72		
Bunch separation (ns)	0.5					
Beam pulse duration (ns)	177 156			156		
Beam power/beam MWatts	4.9			14		
Hor./vert. norm. emitt (10 ⁻⁶ /10 ⁻⁹)	7.5/40	4.8/25	7.5/40	0.66/20		
Hor/Vert FF focusing (mm)	4/0.4	4 / 0.1	4/0.4	4 / 0.1		
Hor./vert. IP beam size (nm)	248 / 5.7	202 / 2.3	101/3.3	40 / 1		
Hadronic events/crossing at IP	0.07	0.19	0.28	2.7		
Coherent pairs at IP	10	100	2.5 107	3.8 10 ⁸		
BDS length (km)	1.87		2.75			
Total site length km	13.0		48.3			
Wall plug to beam transfert eff	7	.5%	6.8%			
Total power consumption MW	129.4 415			415		

Relative cost of Linear Colliders

J.P.Delahaye

CLIC performances (FoM) and cost (relative) as a function of the accelerating gradient

- Performances increasing with lower accelerating gradient (mainly due to higher efficiency)
- Flat cost variation in 100 to 130 MV/m with a minimum around 120 MV/m

J.P.Delahaye

CLIC performances (FoM) and cost optimisation as function of RF frequency

- Maximum Performance around 14 GHz
- Flat cost variation in 12 to 16 GHz frequency range with a minimum around 14 GHz

J.P.Delahaye

Beam emittance preservation

Beam Dynamics, alignment and stability

Emittance blow-up from Damping Ring to BDS limited:
in Horizontal to 30% from 500 nrad
in Vertical to 300% from 5 nrad

- Alignment procedure based on:
 - Actif pre-alignment of beam line components: 15 μm
 - Beam-based alignment (3 μm) using BPMs with good resolution (100nm)
 - Alignment of accelerating structures to the beam using wake-monitors
 - Tuning based on luminosity/beam size measurement with 2% resolution
- Beam stability by quadrupole stabilisation:0.2nm beam-beam stability@IP
 - quadrupole passive and active stabilisation
 - beam feedback (pulse to pulse) and Intrabeam feedback

Quadrupole Magnets	Horizontal	Vertical		
Linac (2600 quads)	14nm	1.5 nm		
Final Focus (2quads)	4 nm	0.5 nm		

J.P.Delahaye

