

SuperB update

M.A.Giorgi INFN & Universita' di Pisa

87th Plenary ECFA Meeting July 2, 2010

Outline

Major Progress toward TDR. Better understanding of:

- •Machine parameters and flexibility .
- •Physics with Polarization.
- •Detector Geometry and requirements.

Process:

Increase the size of the collaboration with new

- entries: Poland
- Mou's
- Towards the startup

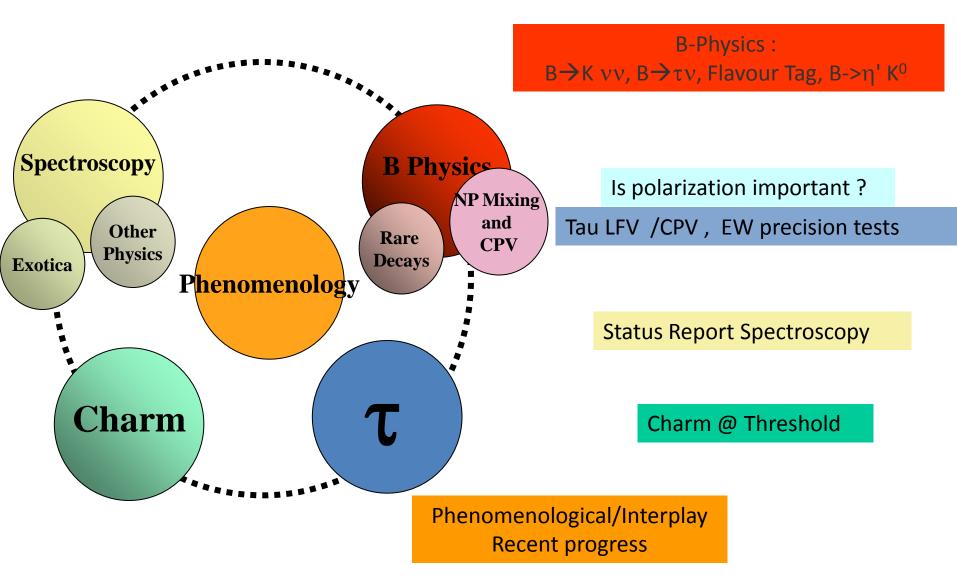
Progress report before TDR

SuperB Progress Reports

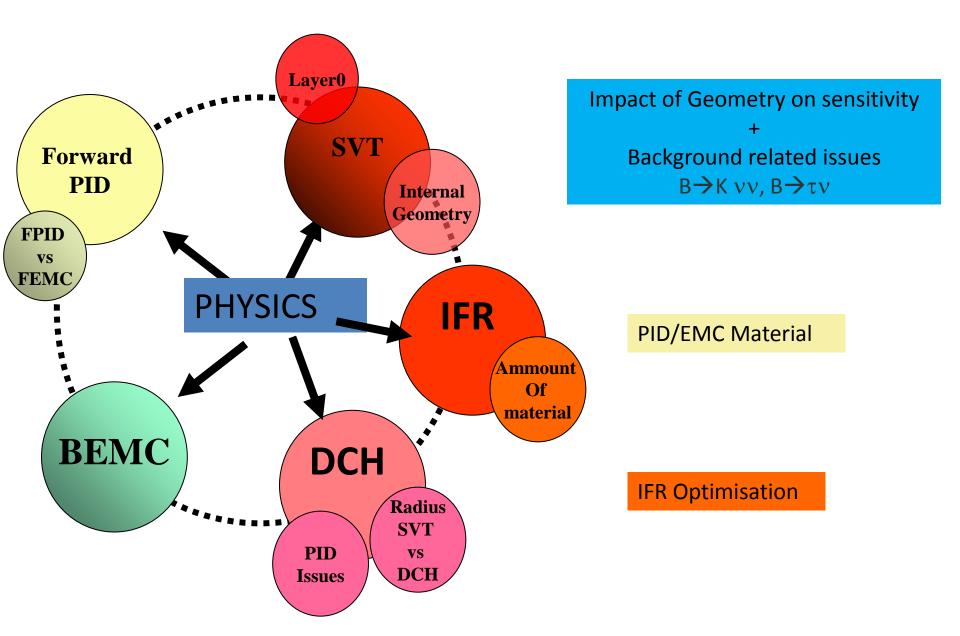
The Physics

Accelerator

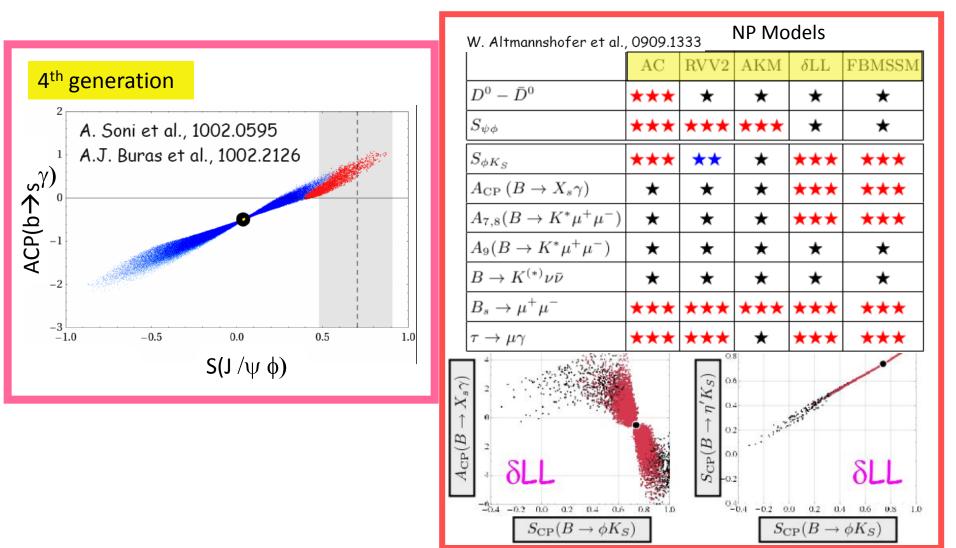
Detector


Computing

• <u>http://mailman.fe.infn.it/superbwiki/index.php/SuperB_white_paper</u>

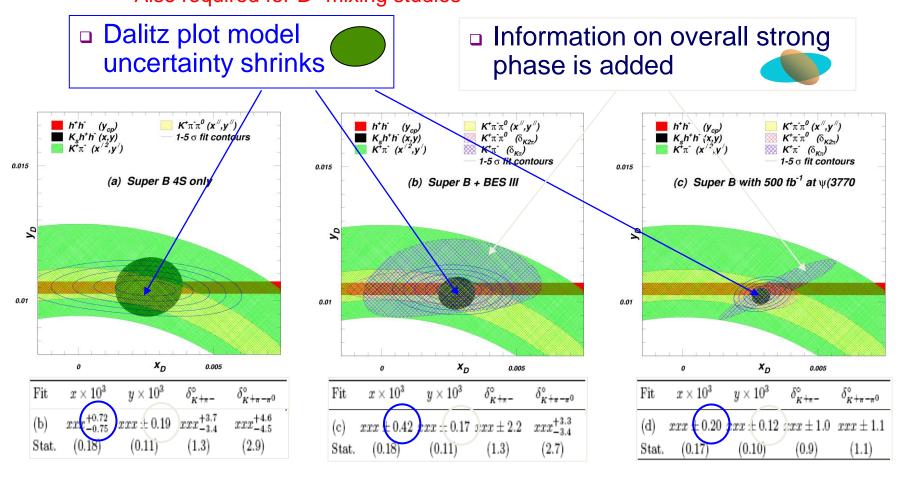

Physics White Paper (update)

- Topics covered:
 - t decays (LFV/CPV/SM)
 - B Physics: at the 4S and 5S
 - Charm Physics
 - EW neutral current measurements
 - Spectroscopy
 - Direct Searches
 - Role of Lattice QCD
 - Interplay between measurements


Physics

Impact on Detector and Machine

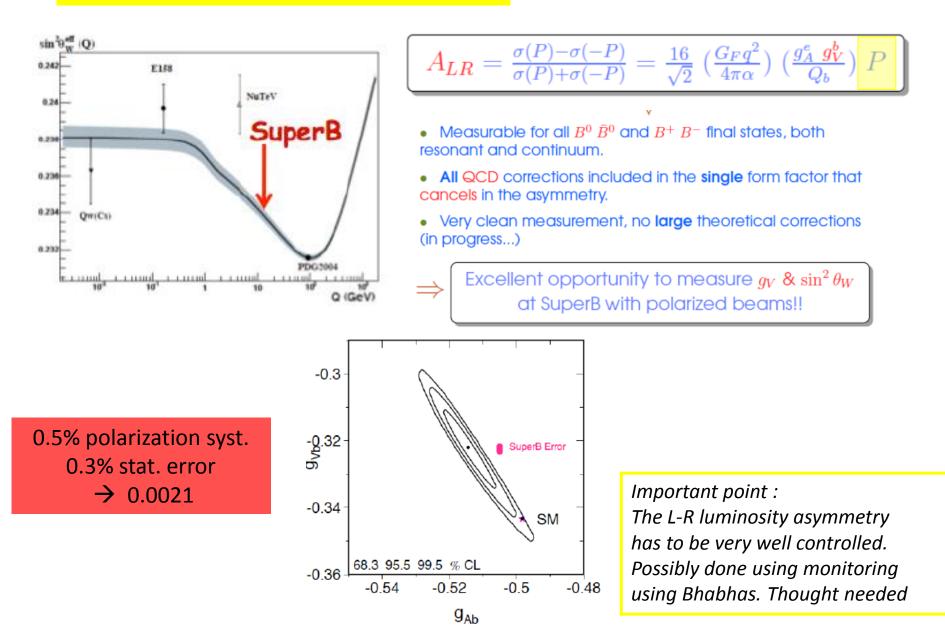
Quite "complete" work done to look at NP SuperB observable and correlations among these observable


Interest of running @ threshold

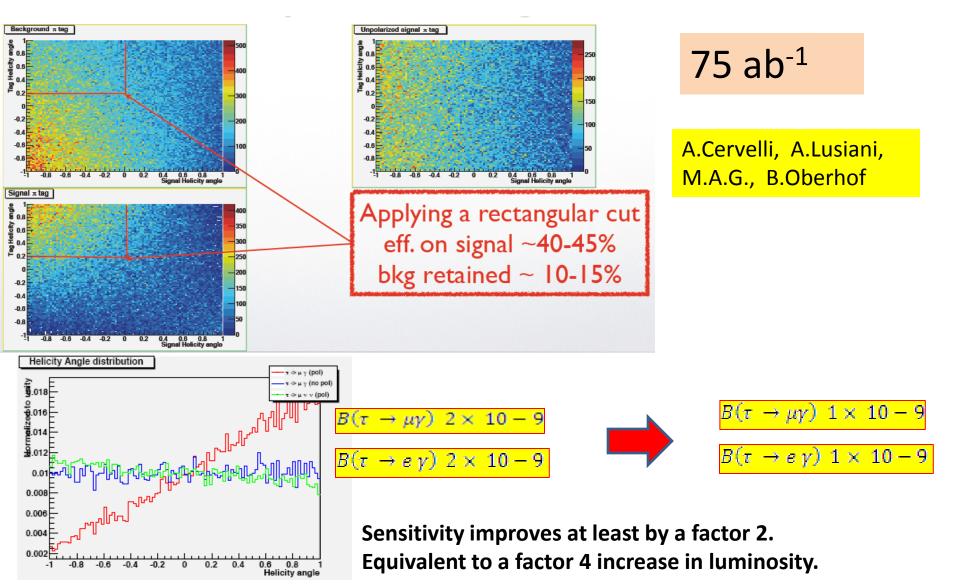
B. Meadow et al.

500 fb-1 at *ψ*(3770)

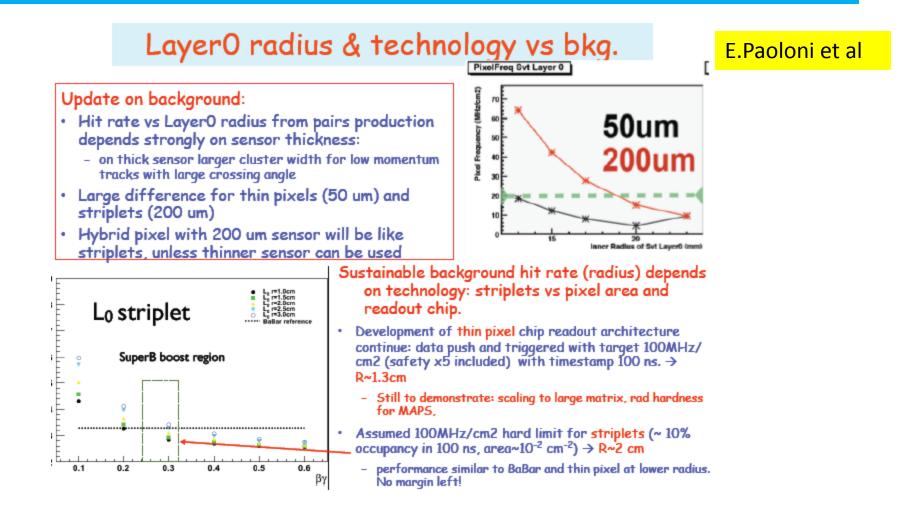
Decays of $\psi(3770) \rightarrow D^0 D^0$ produce coherent (C=-1) pairs of D^0 's. Quantum correlations in their subsequent decays allow measurements of strong phases •Required for improved measurement of CKM γ •Also required for D^0 mixing studies



Uncertainty in x_D improves more than that of y_D

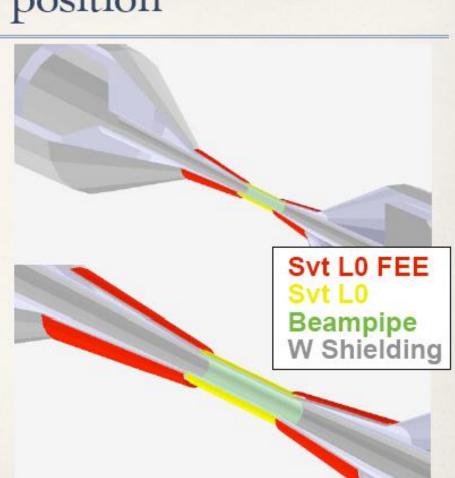

Electroweak measurement @ SuperB POLARISATION NEEDED

M.Roney et al.

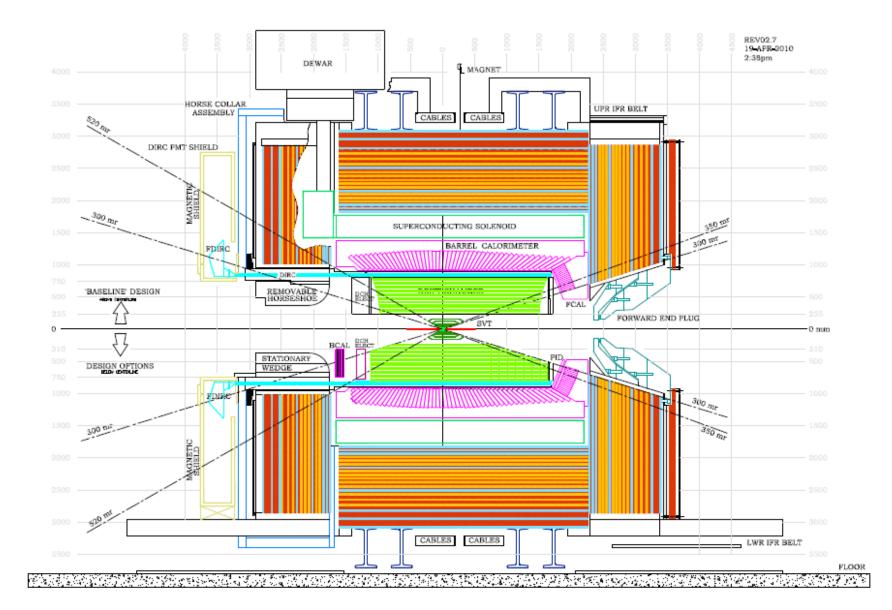

PHYSICS

Polarized beam and tag on leptons and on hadrons ($\tau \rightarrow \pi \nu / \tau \rightarrow \rho \nu$) reduces irreducible background!

Understanding background



Understanding background


E.Paoloni et al

L0 electronics position

- Additional 2 volumes
 - Cones around IR tungsten shielding close to L0
 - 1mm of Si at 2mm from shields (radiation probes)
- •Sensitive volumes: additional BrnRootHits list dumped by RooEvt object

SuperB Detector (with options)

Outstanding Geometry Issues

6 Layer SVT	LO Striplets @ 1.6cm if background is acceptable as default. MAPS Option . Retain 5 Layer outer detector.
SVT – DCH transition radius	~> than 20 cm determined by beam element cryostats to allow easy installation
Backward EMC	Inexpensive Veto device bringing 8-10% sensitivity improvements for $B \rightarrow \tau v$. Low momentum PID via TOF? Technical Issues?
Forward PID	Physics gains about 5% in $B \rightarrow K(*)_{VV}$. Somewhat larger gains for higher multiplicities Open technical options/interactions with EMC
Absorber in IFR	Optimized layout. Plan to reuse yoke. Still need to resolve engineering questions.

On Detector : Understanding Budget

A satisfactory full simulation of different Background sources allows the design of interaction region: The geometry of the detector has now more solid justification.

Budget has been revisited from CDR and breakdown ready (WBS).

WBS	S Item	M&S	Rep. Val.
		KEuro	KEuro
1	SuperB detector	~51000	48922

Present Budget must be revisited with final transport costs of Babar reusable components and currency rates. White Paper ready in TDR shape!

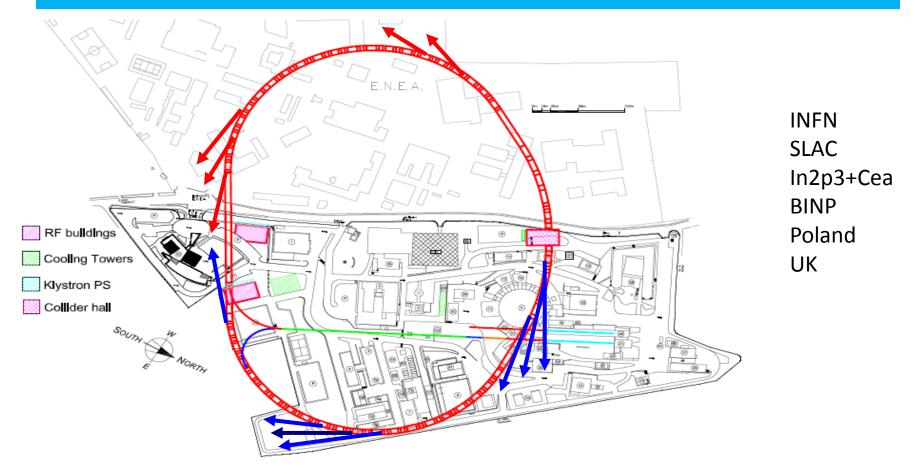
Accelerator White Paper

The "white paper" on the accelerator is close to conclusion 27 chapters, about 190 pages were planned, about 90% ready! Most chapters and sections are extremely detailed (TDR like). 21 chapters are in the final shape

- 3 (IR, Lifetimes, Imperfections and errors) are under internal revision.
- 1 (Vacuum) needs some updates
- 2 (final budget and milestones) need more precise evaluation.

Parameters

		Base Line		Low Emittance		High Current		Tau/Charm (prelim.)		
Parameter	Units	HER (e+)	LER (e-)	HER (e+)	LER (e-)	HER (e+)	LER (e-)	HER (e+)	LER (e-)	
LUMINOSITY	cm ⁻² s ⁻¹	1.00	E+36	1.00	E+36	1.00	E+36	1.00E+35		
Energy	GeV	6.7	4.18	6.7	4.18	6.7	4.18	2.58	1.61	
Circumference	m	125	8.4	125	i8.4	1258.4		1258.4		
X-Angle (full)	mrad	66		66		66		66		
Piwinski angle	rad	22.88	18.60	32.36	26.30	14.43	11.74	8.80	7.15	
β _x @ IP	cm	2.6	3.2	2.6	3.2	5.06	6.22	6.76	8.32	
β _v @ IP	cm	0.0253	0.0205	0.0179	0.0145	0.0292	0.0237	0.0658	0.0533	
Coupling (full current)	%	0.25	0.25	0.25	0.25	0.5	0.5	0.25	0.25	
e _x (without IBS)	nm	1.97	1.82	1.00	0.91	1.97	1.82	1.97	1.82	
e _x (with IBS)	nm	2.00	2.46	1.00	1.23	2.00	2.46		6.4	
e y	pm	5	6.15	2.5	3.075	10	12.3	13	16	
σ _x @ IP	μm	7.214	8.672	5.699	8.274	10.060	12.370	18.749	23.076	
σ _y @ IP	μm	0.036	0.036	0.021	0.021	0.054	0.054	0.092	0.092	
Σx	μm	11.433		8.085		15.944		29.732		
Σ _y	μm	0.050		0.030		0.076		0.131		
σ _L (0 current)	mm	4.69	4.29	4.73	4.34		3.65	4.75	4.36	
σ∟ (full current)	mm	5	5	5	5	4.4	4.4	5	5	
Beam current	mA	1892	2447	1460	1888	3094	4000	1365	1766	
Buckets distance	#	2			2			1		
lon gap	%	2			2		2		2	
RF frequency	Hz	4.761		4.76E+08		4.76E+08		4.76E+08		
Harmonic number		19		1998		1998		1998		
Number of bunches		97		978		1956		1956		
N. Particle/bunch						4.15E+10				
Tune shift x		0.0021	0.0033	0.0017	0.0025		0.0067	0.0052	0.0080	
Tune shift y		0.0970	0.0971	0.0891	0.0892		0.0687	0.0909	0.0910	
Long. damping time	msec	13.4	20.3	13.4	20.3		20.3	26.8	40.6	
Energy Loss/turn	MeV	2.11	0.865	2.11	0.865		0.865		0.166	
σ _E (full current)	dE/E	6.43E-04			7.34E-04		7.34E-04			
CM o _E	dE/E	5.00		5.00E-04		5.00E-04		5.26E-04		
Total lifetime	min	4,23								
Total RF Power	MW	17.	08	12	.72	30.	.48	3.1	1	


Tau/charm threshold running at 10³⁵

Baseline + other 2 options: •Lower y-emittance • Higher currents (twice bunches)

Baseline: •Higher emittance due to IBS •Asymmetric beam currents

RF power includes SR and HOM

Machine layout with Synch Radiation Beam Lines

Polarization is understood and fesible! Parameter flexibility allows 10³⁶ peak lumi without stressing limits!

Where we are

- TDR on the final path: a white paper TDR-like ready.
- MOU's with France, USA and Russia in operation.
- MOU with Canada in final step.
- Further developments on
 - Physics
 - Detector
 - accelerator

Toward green light

- The project is the first "flagship project" of the new national research plan
- The project has been mentioned as a reciprocity condition in a russian italian agreement on ignitor (nuclear fusion)

PNR on newspapers

Mer 14/04/2010

"*** **24 ORE**

Estratto da pag. 25

Innovazione. Più spazio all'industria Gelmini aggiorna il piano nazionale

Eugenio Bruno

ROMA In acceleratore di particelle complementare a quello del Cern di Ginevra. Un network dei laboratori di nanotecnolocia Una ofibbicia del fottoren dei faboratori di nanotecnolonia Una ofibbicia del fottoren

dei laboratori di nanotecnologia. Una «fabbrica del futuro» per rilanciare il manifatturiero. Uno studio approfondito nell'epigenetica. Sono alcuni dei «progetti bandiera» che il ministro dell'Istruzione Maristella Gelmini punta a inserire tra le priorità del programma nazionale della ricerca (Par) 2010-2012.

La lista degli interventi su cui il Miur vuole dirottare le prime risorse che il Pnr intercetterà contiene 14 voci. Fermo restando che da qui alla sua ufficializzazione potrebbe anche subire delle modifiche, l'elenco si presenta estremamente variegato. Alle azioni sulla formazione nel campo del nucleare, sull'approfondimento dei rapporti tra invecchiamento e Dna e alle misure per l'agroalimentare e i beni culturali - anticipati dallo stesso ministro al Sole 24 Ore il 26 marzo scorso - si è argiunta

Gli interventi

Progetto	Settore	Valore stimato (milioni)
Super B Factory	Fisica	650
Cosmo - Skymed II generation	Aerospazio	N.D.
Epigenomica	Medicina	N.D.
3N - Network nazionale delle nanotecnologie	Industria	300
Ritmare - Ricerca ita. per il mare	Industria	795
Sintonia - Sistema integrato di telecomunicazioni	Aerospazio	671
Ipi - Invecchiamento e pop. isolate	Medicina	90
Agro Alimentare	Agricoltura	100
L'ambito nucleare	Energia	53,5
Recupero e rilancio della Villa dei Papiri	Beni cluturali	20
Elettra-Fermi-Eurofel	Industria	191
Astri - Astrofisica con specchi a tecnologia replicante italiana	Aerospazio	
Controllo delle crisi nei sistemi complessi socio-economici	Economica	30
La fabbrica del futuro	Industria	30

ras: «Cosmo-Skymed II generation», «Sintonia» e «Astri». Con i primi due orientati a potenziare i metodi di osservazione della terra dallo spazio e il terzo che, quasi fosse un controcampo, si concentra sull'osserSe ne dovrebbe sapere di più tra fine aprile e i primi di maggio quando ministri e governatori si siederanno allo stesso tavolo. Dopodiché il Par sarà pronto per andare a Palazzo Chigi, prima, e al Cipe, poi. Comunicato stampa del 26 Aprile 2010 - Miur

Home » Ministero » Il Ministro » Comunicati Stampa » 2010 » 260410

Ministero

Istruzione

Ufficio Stampa

Roma, 26 Aprile 2010

RICERCA, VERTICE ITALIA-RUSSIA, GELMINI FIRMA ACCORDO SU RICERCA NUCLEARE

Oggi, il ministro Mariastella Gelmini, in occasione del vertice italo-russo di Lesmo, ha firmato una dichiarazione d'intenti tra il MIUR e il Ministero della ricerca scientifica russo per la realizzazione di due importanti progetti per la promozione della ricerca nel settore della fusione nucleare.

L'intesa riguarda i programmi di ricerca denominati "IGNITOR" e "SUPER B". Il programma "IGNITOR" prevede la realizzazione in Russia di un innovativo reattore sperimentale a fusione nucleare che verrà utilizzato come fonte di energia.

Il programma "SUPER B" riguarda la realizzazione in Italia di un acceleratore di particelle di nuova generazione che consentirà una più alta intensità di collisioni tra particelle, permettendo la produzione di "quark pesanti".

START

- A formal commitment with INFN for the project with the declaration of some available budget in the current year is expected
- This commitment will set the start of the project