Lightweight integration of Kubernetes
clusters for ATLAS batch processing

Fernando Barreiro Megino, FaHui Lin
University of Texas at Arlington

Second K8s-HEP Meetup

30 Nov 2020
A UNIVERSITY OF P
Y& TEXAS &’J ATLAS
' ‘ ARLINGTON PanDA FXPERIMENT

~
N

P et

\
N

Harvester: universal resource interface

PanDA Server

T. Maeno

[scheduler]

get/update job

Gl pilot Spin-up

get, update, kill job
request job or pilot submit
request job job+pilot
or pilot request job
\ or pilot
\
| VVObox VObox
j D D VObox
submit, i
monitor, ' submit, increase or throttle or
kill p/uot i Tﬁgﬂ’ get/update job submit pilots .
[“componenis E '/ el pilot scheduler Worker = pilot, VM,
components]
submit pilot or CE MPI worker,
ﬁ : batch worker

compute nodes L

HPC center

! Grid site

Harvester uses whatever
available at the resource
— No requirement or

constraint for Harvester 2

https://github.com/HSF/harvester

Harvester K8s integration - Jobs

@‘Tj

PanDA PanDA server PanDA job

of Jobs
K8s cluster %

of types
A —> Pod Pod Pod
Sweeper Clean up K8s jobs
K8s & Pilot Pilot
Monitor Poll K8s job states ;
core a Pilot
K8s 2 Pod Pod
Submitter Create K8s jobs =
K8s Cred Pilot Pilot
manager Share/update certs
through K8s secret
Harvester

Rucio Storage
Element

https://github.com/HSF/harvester

ATLAS K8S queues

: Slots of Running jobs

10 August -10 October 2020

WallClock Consumption

1.75K

1.50K

Amazon

percentage
125K o ag

UVictoria == finished 91%
‘ = failed 8%

1.00K
750

500

250

08/13 08/16 08/19 08/22 08/25 08/28 08/31 09/03 09/06 09/09 09/12 09/15 09/18 09/21 09/24 09/27 09/30 10/03 10/06 10/09

min max avg total v

— CERN-EXTENSION_KUBERNETES 156 808 527 32.132K
MWT2_K8S_UCORE 123 377 306 18.643K

— CA-VICTORIA-K8S-T2 0 485 288 17.543K
Taiwan-LCG2_K8S_UCORE 8 163 144 8.804K
GKE 0 270 68 4130K

— FRESNO-EKS-REMOTE 0 69 9 523
~ FRESNO-EKS-S3 0 0 0 0

CVMEFS: installation methods for K8S

e Directly on the nodes through package manager: most stable solution, but not
always possible

e Through DaemonSets and volumes
o If you don’t set memory and CPU requests/limits, the driver pods will not work properly
o CVMES CSl driver (CSI: Container Storage Interface)
m Implemented by CERN IT and used initially in some of our clusters
m Golang implementation of required methods
m Complicated and some issues e.g. on restart
o CVMES PRP driver (PRP: Pacific Research Platform)
m My preferred option when direct installation not possible
m CVMFS mount shared through local volume. Much simpler
m Currently using ATLAS fork at CERN, Google and Amazon PanDA queues
e Small modifications: liveness probe and blind clean up on start-up
m Only known issue to me: jobs fail until cache is loaded

https://github.com/cernops/cvmfs-csi
https://github.com/sfiligoi/prp-osg-cvmfs
https://github.com/PanDAWMS/prp-osg-cvmfs

CE/batch features

e Authenticating to K8s cluster: manually managed kubeconfig files
e Scheduling: we use default Kubernetes scheduling. K8s job instances

submitted with CPU & memory requirements according to our job sizes
o We use affinity so that single core jobs go to same node and don’t spread out
o We haven't studied in detail Kubernetes scheduling priorities, but in our experience so far we
didn’t face issues with mixed (single vs multi core) payloads

e APEL accounting: Ryan (UVic) working on it

e Fair shares:

o So far only ATLAS specific sites/clusters
o Some Kubernetes projects have implemented them, but it's something that would have to be
evaluated

e Traceability: it gets mentioned in every WLCG K8S presentation, but | don’t
think anyone has looked into it

Native containers, but...

Pod

CentOS7 container

ALRB setup
Pod (requires privileged mode)
O
ALRB setup Pilot
Stage-In
Singularity Payload Singularity container S'tage-O.ut
) Singularity
container

First integration, being phased out

e Push & pull model independent

e Problem when payload not
CentOS7 compatible

e Python version mismatches
between Stage-In/Out and Payload

e Keeping this model alive requires
additional effort and restricts sites

Second integration

e Nested containers require
privileged mode
° Not very elegant

Native containers, but...

Pod
Stagg n Potential future integration
container
Start-up probe User container: direct execution of payload
Stage-Out
SN0 (PIORE container

* initial braindump of work required
e Container synchronization in the pod
e Stage-In/Out containers with Pilot and Rucio client modules
e Absorb pilot/WWN components in Harvester or replace directly through Kubernetes features
o Available in kubernetes: memory, disk and walltime monitoring
o Management of error codes/messages
o Generation of execution string (i.e. mimicking ALRB and pilot wrapper)
o Other pilot features difficult to replace, e.g. looping job monitoring
e Image management:
o Singularity images to be published in scalable registry
o Stage-in/out containers to be updated with each pilot/rucio client release
= effort to implement this needs to be justified and have an important use case

Cloud sites

e Done in collaboration with Rucio team: lightweight cloud site with compute
and storage
e Google

(@)

o O O O

Evaluated jobs
m MC Simulation with remote RSE
m User analysis with local RSE
Very easy to setup clusters and additional features, e.g. preemptible VMs and service
accounts
Preemptible VMs can only last 24h, but ~70% cheaper
m Limits duration of acceptable payloads and increases failure rate to ~15%
I/O demanding jobs require higher-end VMs with local $$D
Rucio SEs on GCS functional, e.g. 3rd party copy, download, upload
Issue with direct 1/0 from GCS (file corruption errors)
This model was evaluated by LSST and they successfully ran a pipeline (S. Padolski)

Cloud sites

e Amazon

o Evaluated jobs
m MC Simulation with remote RSE
m User Analysis with local RSE ongoing

m Assuming your Spot bid is good enough, the instances can run indefinitely
o OS for nodes with old systemd, mounting volumes to pods starts failing after a while
o Rucio team ironing out last details to complete integration
o Direct I/O worked on preliminary tests with S3

e Oracle cloud

Evaluated jobs: HC on trial account

Easy setup, but service accounts have to be created directly on Kubernetes cluster
Available VM sizes in Zurich not ideal for ATLAS payloads

Potential project from UOslo

e General remark: egress cost represent very significant fraction

OO O O O

10

Horovod clusters for HPO T. Maeno

Create a yaml file with ‘
Head pod + K
nGPU/nGPUPerNode

Worker pods Amazon EKS Worker

yaml file
> 4

Submit Worker+Job "
= Assign the yaml

Harvester

Evaluation
Container

Job with
> Worker pod with GPU
-—Evaluation container + sshd
> Head pod with CPU-only
- Evaluation container + horovodrun
- OS container + the pilot
- Shared directory between two
containers

11

Conclusions

e Straightforward, standard integration of major cloud providers
e Lightweight, industry standard model for smaller Grid sites
o But some CE functionalities need to be replaced
e Scale of our exercises has been hundreds to few thousand cores per cluster

o Mostly limited by availability of resources
o No stress at current scale

e Potential for advanced features: User Analysis facilities, machine learning
clusters, etc.

12

Backup

Also see https://indico.cern.ch/event/950884/

13

https://indico.cern.ch/event/950884/

Harvester K8s integration - Job

e Harvester submits K8s Jobs (job controller) as workloads on K8s cluster
o “A Job creates one or more Pods and ensures that a specified number of them successfully
terminate” (official doc)
o “As pods successfully complete, the Job tracks the successful completions. When a specified
number of successful completions is reached, the task (ie, Job) is complete” (official doc)

e One K8s Job <=> one batch job

o Harvester submits jobs

o Each job runs one pod. Pilot runs in the pod
o Harvester monitors jobs and pods

o After jobs finish, Harvester deletes them

e KB8s job retry mechanism is not used

o If container fails, then pod will fail and job will fail
(.spec.backoffLimit = 0 and .spec.template.spec.restartPolicy = "Never")
o We manage retries on PanDA side

14

Harvester K8S Integratlon - Jobs https://github.com/HSF/harvester

resources:
kind: Job limits:
ce cpu: "8"
backoffLimit: © requests:

Cpu: 7200m
restartPolicy: Never memory: 12G
containers: e

- args: volumeMounts:
- ¢ - mountPath: /cvmfs/atlas.cern.ch
- cd; wget name: atlas
https://raw.githubusercontent.com/HSF/harvester/mast L
er/pandaharvester/harvestercloud/pilots starter.py; - mountPath: /proxy
chmod 755 pilots_starter.py; name: proxy-secret
./pilots_starter.py || true .
command: volumes:
- Jusr/bin/bash - name: atlas
env: persistentVolumeClaim:
- name: computingSite claimName: cvmfs-config-atlas
value: $computingSite readOnly: true
- name: pandaQueueName -
value: $pandaQueueName - name: proxy-secret
- name: proxySecretPath secret:
value: /proxy/x509up_u25606_prod defaultMode: 420

st secretName: proxy-secret
image: atlasadc/atlas-grid-centos?

https://github.com/HSF/harvester
https://raw.githubusercontent.com/HSF/harvester/master/pandaharvester/harvestercloud/pilots_starter.py
https://raw.githubusercontent.com/HSF/harvester/master/pandaharvester/harvestercloud/pilots_starter.py

Harvester K8s integration - Pod Affinity

e Two resource types of ATLAS job:

o SCORE (1 core) vs MCORE (usually 8 cores = whole node, sometimes 4 cores or else)
o Each pod has label about resource type (# of pods of either type is according to ATLAS jobs)

e KB8s spreads out pods across nodes by default
o May cause inefficient situation: Each node only runs 1 or 2 SCORE pods. The node still has plenty of
empty slots but MCORE pod cannot fit in the node and there may not be enough SCORE pods to fill the node
e We set pod affinity policies to fill the slots more efficiently
o SCORE and MCORE have anti-affinity against each other
o SCORE has affinity to SCORE itself

affinity:
e Thus SCORE pods tend to gather on the same nodes pngntiAfﬁnity:

preferredDuringSchedulingIgnoredDuringExecution:
- podAffinityTerm:
labelSelector:
labels:

controller-uid: a59104f5-b8el-4666-8abc-7e407bbe8ebb Tatgh?xﬁgggj:ggi. e
job-name: grid-job-2035575 opergéor: In yP
pq: CERN-EXTENSION_KUBERNETES values:
prodSourcelabel: managed — SCORE

resourceType: MCORE topologyKey: kubernetes.io/hostname

weight: 100 16

Harvester K8s integration - Pod Affinity

e Kubernetes site CERN-EXTENSION_ KUBERNETES with 320 slots
e Slots are almost kept full during SCORE and MCORE transition

i Slots of Running jobs

400
300
200

100

’ 09/28 12:00 09/29 00:00 09/29 12:00 09/30 00:00 09/30 12:00 10/01 00:00
min max avg total v
— 8 (MCORE) 0 328 276 22.6027 K
- 1 (SCORE) 0 204 38 3.0820 K

17

CVMES & Squid setup on K8S clusters

e CVMFS: read-only hierarchically distributed read-only
file-system
o ATLAS relies on CVMFS to distribute its
Software on all resources (Grid, HPC, Cloud)
o Installed through daemonset + k8s volumes

e Frontier Squid: access to ATLAS run conditions
database and local CVMFS cache through squid cache
o Installed on dedicated VM or as part of the K8s
cluster

Conditions data

mn Trangfor out
mation

levmfs

i

Rucio download

(or streamed) Rucio upload

Rucio Storage Element

18

CVMEFS drivers: importance of CPU/mem requirements

e QOur K8S nodes typically fully exploited: jobs submitted with “burstable” QoS

e Drivers installed at CERN Openstack clusters typically have no requirements

e No CPU and memory requirements for driver pods means “best effort” QoS
(i.e. lowest priority)

o No memory requirement: causes CVMFS driver pod to be killed first when OOM
o No CPU requirements: causes CVMFS driver to be throttled, i.e. gets absolutely no CPU
cycles when node is packed with jobs

o Both end up with an extremely unstable cluster and unacceptable failure rates

19

US ATLAS - Google project

Tested various configurations and payloads during extensive periods, but at low scale

CERN ; Google EU West
— '”!P“t Stage 1: Simulation with storage at CERN
CERN i e Very light 1/O jobs
< i GKE .
DATADISK ; queue e GKE setup and evaluation
Output
GKE queue

: Stage 2: End-user analysis with storage at Google
i Input Output e /O heavy jobs from volunteer analysis user

e Storage at Google possible thanks to
Rucio/FTS/middleware integration
e VM/node tuning

Asynchr%)nous
data transfers

Stage 1. GKE simulation cluster with CERN

Limited to Simulation jobs (low 1/O),

since storage at CERN
Preemptible nodes

o Causing most of the failures
o Limiting job duration to <5 hours
o Attractive deal: big cost reduction,

slightly higher failure rate
Autoscaled cluster
o Cluster ramps down and lowers the
cost when no jobs queued

Costs with remote storage:
~2kUSD/month for 150 cores
including egress to CERN

storage

Slots of Running jobs

50 ~2 months

300

150

Reduced cluster size to
keep within budget

100

50

0

06/23 07/01 07/08 07/16 07/24 08/01 08/08 08/16

min max avg
299 121 8.7968K
230 14 1.0217K
199 6

9 3

08/24
total v
— MC Simulation Fast

— MC Simulation Full

— MC Event Generation 426

Testing 251

21

Stage 2: GKE User Analysis and GCS storag

e First ATLAS attempt to run a site (compute + storage) | S, | ooz |
fully in the cloud U e
e \/olunteer user analyzing 1TB dataset @ e
o 2.51t012.5 (=5 x 2.5) GB of input per job Rucio
e Side-condition: All input files need to be downloaded ‘dm—/}’ i~
within 10 min (signed URL lifetime)
e (Google throttles throughput to resources to balance
usage across tenants % |

o Found bottleneck in CPU—disk throughput on lower end VMs
o To improve you can upgrade storage type or over-allocate disks |: 5 5 .. B
o Jobs required VMs with local SSD (~50% more expensive) o a ®

e Preemptible nodes confuses end users v :

22

Other commercial cloud projects

e More recently we started running K8s clusters at Amazon (Fresno State grant) and

Oracle (Univ. of Oslo contract, setup in progress)
o Rucio team also working with davix team to sort out issues for transfers to S3

e Basic compute integration is straightforward and no code changes required
e [Effort mostly spent understanding different setups between cloud providers (network
details, usage of Spot instances, setting up autoscaling, service accounts)

Slots of Running jobs

200

150

100

total percentage
== finished 44.3 Mil 97%
= failed 1.292 Mil 3%

50

10/1100:00 10/1112:00 10/1200:00 10/1212:00 10/1300:00 10/1312:.00 10/1400:00 10/1412:00 10/1500:00 10/1512:00

min max avg total v
— FRESNO-EKS-REMOTE 0 159 104 12.6248K
0 30 7 870

ANALY-FRESNO-EKS-REMOTE
23

