
Lightweight integration of Kubernetes
clusters for ATLAS batch processing

Fernando Barreiro Megino, FaHui Lin
University of Texas at Arlington

Second K8s-HEP Meetup
30 Nov 2020

1

2

PanDA Server

subset of pilot
components

compute nodes

HPC center

Edge node

submit,
monitor,
kill pilot

Harvester

get, update, kill job
request job or pilot

pilot

pilot scheduler
or CEsubmit pilot

Grid site

increase or throttle or
submit pilots

request job
or pilot

get/update job
kill pilot

Cloud

pilot
VM/container

request job
or pilot

Harvester

spin-up

get/update job
kill pilot

VObox

VOboxHarvester

Worker = pilot, VM,
 MPI worker,
 batch worker

scheduler

spin-up

submit
job+pilot

Harvester

VObox

CE

submit,
monitor,
kill pilot

Harvester uses whatever
available at the resource
→ No requirement or
constraint for Harvester

Harvester: universal resource interface T. Maeno

K8s cluster

PanDA server

Harvester K8s integration - Jobs https://github.com/HSF/harvester

3

https://github.com/HSF/harvester

ATLAS K8S queues
10 August -10 October 2020

4

CERN

UChicago

Google

ASGC

UVictoria

Amazon

CERN
quota
halved

UVic
cluster
migration

CVMFS: installation methods for K8S
● Directly on the nodes through package manager: most stable solution, but not

always possible
● Through DaemonSets and volumes

○ If you don’t set memory and CPU requests/limits, the driver pods will not work properly
○ CVMFS CSI driver (CSI: Container Storage Interface)

■ Implemented by CERN IT and used initially in some of our clusters
■ Golang implementation of required methods
■ Complicated and some issues e.g. on restart

○ CVMFS PRP driver (PRP: Pacific Research Platform)
■ My preferred option when direct installation not possible
■ CVMFS mount shared through local volume. Much simpler
■ Currently using ATLAS fork at CERN, Google and Amazon PanDA queues

● Small modifications: liveness probe and blind clean up on start-up
■ Only known issue to me: jobs fail until cache is loaded

5

https://github.com/cernops/cvmfs-csi
https://github.com/sfiligoi/prp-osg-cvmfs
https://github.com/PanDAWMS/prp-osg-cvmfs

● Authenticating to K8s cluster: manually managed kubeconfig files
● Scheduling: we use default Kubernetes scheduling. K8s job instances

submitted with CPU & memory requirements according to our job sizes
○ We use affinity so that single core jobs go to same node and don’t spread out
○ We haven’t studied in detail Kubernetes scheduling priorities, but in our experience so far we

didn’t face issues with mixed (single vs multi core) payloads

● APEL accounting: Ryan (UVic) working on it
● Fair shares:

○ So far only ATLAS specific sites/clusters
○ Some Kubernetes projects have implemented them, but it’s something that would have to be

evaluated

● Traceability: it gets mentioned in every WLCG K8S presentation, but I don’t
think anyone has looked into it

CE/batch features

6

Native containers, but...

7

Pod (requires privileged mode)

CentOS7 container

Stage-In
Singularity
container

ALRB setup

Payload Singularity container Stage-Out
Singularity

Pilot

Pod

CentOS7 container

Stage-In

ALRB setup

Payload Stage-Out

Pilot

Second integration
● Push & pull model independent
● Each component runs on his

favorite container image
● Compatible with Grid, i.e. no

extra work
● Nested containers require

privileged mode
● Not very elegant

First integration, being phased out
● Push & pull model independent
● Problem when payload not

CentOS7 compatible
● Python version mismatches

between Stage-In/Out and Payload
● Keeping this model alive requires

additional effort and restricts sites

Native containers, but...

8

Pod
Potential future integration

● Requires push model
● Not Grid compatible, i.e. extra

work*
● Each component runs on his

favorite container image
● Native mode

User container: direct execution of payload

Stage-Out
containerStart-up probe

Stage-In
container

Start-up probe

* initial braindump of work required
● Container synchronization in the pod
● Stage-In/Out containers with Pilot and Rucio client modules
● Absorb pilot/WN components in Harvester or replace directly through Kubernetes features

○ Available in kubernetes: memory, disk and walltime monitoring
○ Management of error codes/messages
○ Generation of execution string (i.e. mimicking ALRB and pilot wrapper)
○ Other pilot features difficult to replace, e.g. looping job monitoring

● Image management:
○ Singularity images to be published in scalable registry
○ Stage-in/out containers to be updated with each pilot/rucio client release

⇒ effort to implement this needs to be justified and have an important use case

Cloud sites
● Done in collaboration with Rucio team: lightweight cloud site with compute

and storage
● Google

○ Evaluated jobs
■ MC Simulation with remote RSE
■ User analysis with local RSE

○ Very easy to setup clusters and additional features, e.g. preemptible VMs and service
accounts

○ Preemptible VMs can only last 24h, but ~70% cheaper
■ Limits duration of acceptable payloads and increases failure rate to ~15%

○ I/O demanding jobs require higher-end VMs with local $$D
○ Rucio SEs on GCS functional, e.g. 3rd party copy, download, upload
○ Issue with direct I/O from GCS (file corruption errors)
○ This model was evaluated by LSST and they successfully ran a pipeline (S. Padolski)

9

Cloud sites
● Amazon

○ Evaluated jobs
■ MC Simulation with remote RSE
■ User Analysis with local RSE ongoing

○ AWS setup more complicated, in particular setup of Spot instances and auto scaling
■ Assuming your Spot bid is good enough, the instances can run indefinitely

○ OS for nodes with old systemd, mounting volumes to pods starts failing after a while
○ Rucio team ironing out last details to complete integration
○ Direct I/O worked on preliminary tests with S3

● Oracle cloud
○ Evaluated jobs: HC on trial account
○ Easy setup, but service accounts have to be created directly on Kubernetes cluster
○ Available VM sizes in Zurich not ideal for ATLAS payloads
○ Potential project from UOslo

● General remark: egress cost represent very significant fraction
10

Horovod clusters for HPO

11

Job with
nGPU

Submit Worker+Job
= Assign the yaml

file

Fetch

job

iDDS

Harvester

Evaluation
Container

Pilot

Get
HP po

int

Rep
ort

 lo
ss

Head

Worker

Worker

MPI

➢ Worker pod with GPU
– Evaluation container + sshd

➢ Head pod with CPU-only
– Evaluation container + horovodrun
– OS container + the pilot
– Shared directory between two

containers

yaml file

Create a yaml file with
Head pod +

nGPU/nGPUPerNode
Worker pods

EKS
cluster

T. Maeno

Conclusions
● Straightforward, standard integration of major cloud providers
● Lightweight, industry standard model for smaller Grid sites

○ But some CE functionalities need to be replaced

● Scale of our exercises has been hundreds to few thousand cores per cluster
○ Mostly limited by availability of resources
○ No stress at current scale

● Potential for advanced features: User Analysis facilities, machine learning
clusters, etc.

12

Backup

Also see https://indico.cern.ch/event/950884/

13

https://indico.cern.ch/event/950884/

● Harvester submits K8s Jobs (job controller) as workloads on K8s cluster
○ “A Job creates one or more Pods and ensures that a specified number of them successfully

terminate” (official doc)
○ “As pods successfully complete, the Job tracks the successful completions. When a specified

number of successful completions is reached, the task (ie, Job) is complete” (official doc)

● One K8s Job <=> one batch job
○ Harvester submits jobs
○ Each job runs one pod. Pilot runs in the pod
○ Harvester monitors jobs and pods
○ After jobs finish, Harvester deletes them

● K8s job retry mechanism is not used
○ If container fails, then pod will fail and job will fail

(.spec.backoffLimit = 0 and .spec.template.spec.restartPolicy = "Never")
○ We manage retries on PanDA side

Harvester K8s integration - Job

14

Harvester K8s integration - Jobs https://github.com/HSF/harvester

15

kind: Job
...
 backoffLimit: 0
...
 restartPolicy: Never
 containers:
 - args:
 - -c
 - cd; wget
https://raw.githubusercontent.com/HSF/harvester/mast
er/pandaharvester/harvestercloud/pilots_starter.py;
chmod 755 pilots_starter.py;
./pilots_starter.py || true
 command:
 - /usr/bin/bash
 env:
 - name: computingSite
 value: $computingSite
 - name: pandaQueueName
 value: $pandaQueueName
 - name: proxySecretPath
 value: /proxy/x509up_u25606_prod
 ...
 image: atlasadc/atlas-grid-centos7

 resources:
 limits:
 cpu: "8"
 requests:
 cpu: 7200m
 memory: 12G
 ...
 volumeMounts:
 - mountPath: /cvmfs/atlas.cern.ch
 name: atlas

...
- mountPath: /proxy

 name: proxy-secret
 ...
 volumes:
 - name: atlas
 persistentVolumeClaim:
 claimName: cvmfs-config-atlas
 readOnly: true
 ...
 - name: proxy-secret
 secret:
 defaultMode: 420
 secretName: proxy-secret

https://github.com/HSF/harvester
https://raw.githubusercontent.com/HSF/harvester/master/pandaharvester/harvestercloud/pilots_starter.py
https://raw.githubusercontent.com/HSF/harvester/master/pandaharvester/harvestercloud/pilots_starter.py

● Two resource types of ATLAS job:
○ SCORE (1 core) vs MCORE (usually 8 cores = whole node, sometimes 4 cores or else)
○ Each pod has label about resource type (# of pods of either type is according to ATLAS jobs)

● K8s spreads out pods across nodes by default
○ May cause inefficient situation: Each node only runs 1 or 2 SCORE pods. The node still has plenty of

empty slots but MCORE pod cannot fit in the node and there may not be enough SCORE pods to fill the node

● We set pod affinity policies to fill the slots more efficiently
○ SCORE and MCORE have anti-affinity against each other
○ SCORE has affinity to SCORE itself

● Thus SCORE pods tend to gather on the same nodes

Harvester K8s integration - Pod Affinity

 affinity:
podAntiAffinity:

preferredDuringSchedulingIgnoredDuringExecution:
 - podAffinityTerm:
 labelSelector:
 matchExpressions:
 - key: resourceType
 operator: In
 values:
 - SCORE
 topologyKey: kubernetes.io/hostname
 weight: 100

 labels:
controller-uid: a59104f5-b8e1-4666-8abc-7e407bbe8ebb
job-name: grid-job-2035575
pq: CERN-EXTENSION_KUBERNETES
prodSourceLabel: managed
resourceType: MCORE

16

● Kubernetes site CERN-EXTENSION_KUBERNETES with 320 slots
● Slots are almost kept full during SCORE and MCORE transition

Harvester K8s integration - Pod Affinity

17

(MCORE)

(SCORE)

CVMFS & Squid setup on K8S clusters

Pod

Pilot

/cvmfs

18

In OutTransfor
mation

Rucio download
(or streamed) Rucio upload

● CVMFS: read-only hierarchically distributed read-only
file-system

○ ATLAS relies on CVMFS to distribute its
Software on all resources (Grid, HPC, Cloud)

○ Installed through daemonset + k8s volumes

● Frontier Squid: access to ATLAS run conditions
database and local CVMFS cache through squid cache

○ Installed on dedicated VM or as part of the K8s
cluster

Rucio Storage Element

Conditions data

18

CVMFS drivers: importance of CPU/mem requirements
● Our K8S nodes typically fully exploited: jobs submitted with “burstable” QoS
● Drivers installed at CERN Openstack clusters typically have no requirements
● No CPU and memory requirements for driver pods means “best effort” QoS

(i.e. lowest priority)
○ No memory requirement: causes CVMFS driver pod to be killed first when OOM
○ No CPU requirements: causes CVMFS driver to be throttled, i.e. gets absolutely no CPU

cycles when node is packed with jobs
○ Both end up with an extremely unstable cluster and unacceptable failure rates

● Requesting small amount of CPU and memory solves situation

19

US ATLAS - Google project

CERN
DATADISK

Input

Output

CERN Google EU West

GKE queue

GCS

Input Output

GKE queue

Stage 1: Simulation with storage at CERN
● Very light I/O jobs
● GKE setup and evaluation

Stage 2: End-user analysis with storage at Google
● I/O heavy jobs from volunteer analysis user
● Storage at Google possible thanks to

Rucio/FTS/middleware integration
● VM/node tuning

Asynchronous
data transfers

20

Tested various configurations and payloads during extensive periods, but at low scale

Stage 1: GKE simulation cluster with CERN storage

● Limited to Simulation jobs (low I/O),
since storage at CERN

● Preemptible nodes
○ Causing most of the failures
○ Limiting job duration to <5 hours
○ Attractive deal: big cost reduction,

slightly higher failure rate

● Autoscaled cluster
○ Cluster ramps down and lowers the

cost when no jobs queued

● Costs with remote storage:
~2kUSD/month for 150 cores
including egress to CERN

240

80

40

240

Reduced cluster size to
keep within budget

New
budget
allocation

14% 86%

No jobs available.
Autoscaling ramps cluster
down

21

~2 months

GKE

● First ATLAS attempt to run a site (compute + storage)
fully in the cloud

● Volunteer user analyzing 1TB dataset
○ 2.5 to 12.5 (=5 x 2.5) GB of input per job

● Side-condition: All input files need to be downloaded
within 10 min (signed URL lifetime)

● Google throttles throughput to resources to balance
usage across tenants

○ Found bottleneck in CPU→disk throughput on lower end VMs
○ To improve you can upgrade storage type or over-allocate disks
○ Jobs required VMs with local SSD (~50% more expensive)

● Preemptible nodes confuses end users

Stage 2: GKE User Analysis and GCS storage

22

GCS

3rd party
Rucio/FTS
transfers

Grid
storage 1

Grid
storage 2

Local

Rucio
download/
upload

$ $$$

$$

Other commercial cloud projects
● More recently we started running K8s clusters at Amazon (Fresno State grant) and

Oracle (Univ. of Oslo contract, setup in progress)
○ Rucio team also working with davix team to sort out issues for transfers to S3

● Basic compute integration is straightforward and no code changes required
● Effort mostly spent understanding different setups between cloud providers (network

details, usage of Spot instances, setting up autoscaling, service accounts)

23

Analysis and production queue running on Amazon Spot instances
with 0.1USD/hour bid

