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Harvester: universal resource interface T. Maeno



K8s cluster

PanDA server

Harvester K8s integration - Jobs https://github.com/HSF/harvester
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ATLAS K8S queues
10 August -10 October 2020
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CVMFS: installation methods for K8S
● Directly on the nodes through package manager: most stable solution, but not 

always possible
● Through DaemonSets and volumes

○ If you don’t set memory and CPU requests/limits, the driver pods will not work properly
○ CVMFS CSI driver  (CSI: Container Storage Interface)

■ Implemented by CERN IT and used initially in some of our clusters
■ Golang implementation of required methods
■ Complicated and some issues e.g. on restart

○ CVMFS PRP driver (PRP: Pacific Research Platform)
■ My preferred option when direct installation not possible
■ CVMFS mount shared through local volume. Much simpler
■ Currently using ATLAS fork at CERN, Google and Amazon PanDA queues

● Small modifications: liveness probe and blind clean up on start-up
■ Only known issue to me: jobs fail until cache is loaded
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https://github.com/cernops/cvmfs-csi
https://github.com/sfiligoi/prp-osg-cvmfs
https://github.com/PanDAWMS/prp-osg-cvmfs


● Authenticating to K8s cluster: manually managed kubeconfig files
● Scheduling: we use default Kubernetes scheduling. K8s job instances 

submitted with CPU & memory requirements according to our job sizes
○ We use affinity so that single core jobs go to same node and don’t spread out
○ We haven’t studied in detail Kubernetes scheduling priorities, but in our experience so far we 

didn’t face issues with mixed (single vs multi core) payloads

● APEL accounting: Ryan (UVic) working on it
● Fair shares: 

○ So far only ATLAS specific sites/clusters
○ Some Kubernetes projects have implemented them, but it’s something that would have to be 

evaluated

● Traceability: it gets mentioned in every WLCG K8S presentation, but I don’t 
think anyone has looked into it

CE/batch features
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Native containers, but...
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Second integration
● Push & pull model independent
● Each component runs on his 

favorite container image
● Compatible with Grid, i.e. no 

extra work
● Nested containers require 

privileged mode
● Not very elegant

First integration, being phased out
● Push & pull model independent
● Problem when payload not 

CentOS7 compatible
● Python version mismatches 

between Stage-In/Out and Payload
● Keeping this model alive requires 

additional effort and restricts sites



Native containers, but...
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Pod
Potential future integration

● Requires push model
● Not Grid compatible, i.e. extra 

work*
● Each component runs on his 

favorite container image
● Native mode

User container: direct execution of payload

Stage-Out 
containerStart-up probe

Stage-In 
container

Start-up probe

* initial braindump of work required
● Container synchronization in the pod
● Stage-In/Out containers with Pilot and Rucio client modules
● Absorb pilot/WN components in Harvester or replace directly through Kubernetes features

○ Available in kubernetes: memory, disk and walltime monitoring
○ Management of error codes/messages
○ Generation of execution string (i.e. mimicking ALRB and pilot wrapper)
○ Other pilot features difficult to replace, e.g. looping job monitoring

● Image management: 
○ Singularity images to be published in scalable registry
○ Stage-in/out containers to be updated with each pilot/rucio client release

⇒ effort to implement this needs to be justified and have an important use case



Cloud sites
● Done in collaboration with Rucio team: lightweight cloud site with compute 

and storage
● Google

○ Evaluated jobs
■ MC Simulation with remote RSE
■ User analysis with local RSE

○ Very easy to setup clusters and additional features, e.g. preemptible VMs and service 
accounts

○ Preemptible VMs can only last 24h, but ~70% cheaper
■ Limits duration of acceptable payloads and increases failure rate to ~15%

○ I/O demanding jobs require higher-end VMs with local $$D
○ Rucio SEs on GCS functional, e.g. 3rd party copy, download, upload
○ Issue with direct I/O from GCS (file corruption errors)
○ This model was evaluated by LSST and they successfully ran a pipeline (S. Padolski)
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Cloud sites
● Amazon

○ Evaluated jobs
■ MC Simulation with remote RSE
■ User Analysis with local RSE ongoing

○ AWS setup more complicated, in particular setup of Spot instances and auto scaling
■ Assuming your Spot bid is good enough, the instances can run indefinitely

○ OS for nodes with old systemd, mounting volumes to pods starts failing after a while
○ Rucio team ironing out last details to complete integration
○ Direct I/O worked on preliminary tests with S3

● Oracle cloud
○ Evaluated jobs: HC on trial account
○ Easy setup, but service accounts have to be created directly on Kubernetes cluster 
○ Available VM sizes in Zurich not ideal for ATLAS payloads
○ Potential project from UOslo

● General remark: egress cost represent very significant fraction
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Horovod clusters for HPO
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Conclusions
● Straightforward, standard integration of major cloud providers
● Lightweight, industry standard model for smaller Grid sites

○ But some CE functionalities need to be replaced

● Scale of our exercises has been hundreds to few thousand cores per cluster
○ Mostly limited by availability of resources
○ No stress at current scale

● Potential for advanced features: User Analysis facilities, machine learning 
clusters, etc.

12



Backup

Also see https://indico.cern.ch/event/950884/
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https://indico.cern.ch/event/950884/


● Harvester submits K8s Jobs (job controller) as workloads on K8s cluster
○ “A Job creates one or more Pods and ensures that a specified number of them successfully 

terminate” (official doc)
○ “As pods successfully complete, the Job tracks the successful completions. When a specified 

number of successful completions is reached, the task (ie, Job) is complete” (official doc) 

● One K8s Job <=> one batch job
○ Harvester submits jobs
○ Each job runs one pod. Pilot runs in the pod
○ Harvester monitors jobs and pods
○ After jobs finish, Harvester deletes them

● K8s job retry mechanism is not used
○ If container fails, then pod will fail and job will fail

(.spec.backoffLimit = 0 and .spec.template.spec.restartPolicy = "Never")
○ We manage retries on PanDA side

Harvester K8s integration - Job

14



Harvester K8s integration - Jobs https://github.com/HSF/harvester
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kind: Job
...
  backoffLimit: 0
...
    restartPolicy: Never
    containers:
      - args:
    - -c
    - cd; wget 
https://raw.githubusercontent.com/HSF/harvester/mast
er/pandaharvester/harvestercloud/pilots_starter.py; 
chmod 755 pilots_starter.py; 
./pilots_starter.py || true
    command:
    - /usr/bin/bash
    env:
    - name: computingSite
        value: $computingSite
    - name: pandaQueueName
        value: $pandaQueueName
    - name: proxySecretPath
        value: /proxy/x509up_u25606_prod
    ...
    image: atlasadc/atlas-grid-centos7

    resources:
      limits:
          cpu: "8"
      requests:
          cpu: 7200m
          memory: 12G
    ...
    volumeMounts:
    - mountPath: /cvmfs/atlas.cern.ch
        name: atlas

...
- mountPath: /proxy

      name: proxy-secret
    ...
   volumes:
  - name: atlas
    persistentVolumeClaim:
      claimName: cvmfs-config-atlas
      readOnly: true
  ...
  - name: proxy-secret
    secret:
      defaultMode: 420
      secretName: proxy-secret

https://github.com/HSF/harvester
https://raw.githubusercontent.com/HSF/harvester/master/pandaharvester/harvestercloud/pilots_starter.py
https://raw.githubusercontent.com/HSF/harvester/master/pandaharvester/harvestercloud/pilots_starter.py


● Two resource types of ATLAS job:
○ SCORE (1 core) vs MCORE (usually 8 cores = whole node, sometimes 4 cores or else)
○ Each pod has label about resource type (# of pods of either type is according to ATLAS jobs)

● K8s spreads out pods across nodes by default
○ May cause inefficient situation: Each node only runs 1 or 2 SCORE pods. The node still has plenty of 

empty slots but MCORE pod cannot fit in the node and there may not be enough SCORE pods to fill the node

● We set pod affinity policies to fill the slots more efficiently
○ SCORE and MCORE have anti-affinity against each other
○ SCORE has affinity to SCORE itself

● Thus SCORE pods tend to gather on the same nodes

Harvester K8s integration - Pod Affinity

  affinity:
podAntiAffinity:

  
preferredDuringSchedulingIgnoredDuringExecution:
  - podAffinityTerm:
      labelSelector:
        matchExpressions:
        - key: resourceType
          operator: In
          values:
          - SCORE
      topologyKey: kubernetes.io/hostname
    weight: 100

  labels:
controller-uid: a59104f5-b8e1-4666-8abc-7e407bbe8ebb
job-name: grid-job-2035575
pq: CERN-EXTENSION_KUBERNETES
prodSourceLabel: managed
resourceType: MCORE
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● Kubernetes site CERN-EXTENSION_KUBERNETES with 320 slots
● Slots are almost kept full during SCORE and MCORE transition

Harvester K8s integration - Pod Affinity
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CVMFS & Squid setup on K8S clusters

Pod
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/cvmfs
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In OutTransfor
mation

Rucio download 
(or streamed) Rucio upload

● CVMFS: read-only hierarchically distributed read-only 
file-system

○ ATLAS relies on CVMFS to distribute its 
Software on all resources (Grid, HPC, Cloud)

○ Installed through daemonset + k8s volumes

● Frontier Squid: access to ATLAS run conditions 
database and local CVMFS cache through squid cache

○ Installed on dedicated VM or as part of the K8s 
cluster

Rucio Storage Element

Conditions data
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CVMFS drivers: importance of CPU/mem requirements
● Our K8S nodes typically fully exploited: jobs submitted with “burstable” QoS
● Drivers installed at CERN Openstack clusters typically have no requirements
● No CPU and memory requirements for driver pods means “best effort” QoS 

(i.e. lowest priority)
○ No memory requirement: causes CVMFS driver pod to be killed first when OOM
○ No CPU requirements: causes CVMFS driver to be throttled, i.e. gets absolutely no CPU 

cycles when node is packed with jobs
○ Both end up with an extremely unstable cluster and unacceptable failure rates

● Requesting small amount of CPU and memory solves situation
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US ATLAS - Google project
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GKE queue

GCS

Input Output

GKE queue

Stage 1: Simulation with storage at CERN
● Very light I/O jobs
● GKE setup and evaluation

Stage 2: End-user analysis with storage at Google
● I/O heavy jobs from volunteer analysis user
● Storage at Google possible thanks to 

Rucio/FTS/middleware integration
● VM/node tuning 

Asynchronous 
data transfers
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Tested various configurations and payloads during extensive periods, but at low scale



Stage 1: GKE simulation cluster with CERN storage

● Limited to Simulation jobs (low I/O), 
since storage at CERN

● Preemptible nodes
○ Causing most of the failures
○ Limiting job duration to <5 hours
○ Attractive deal: big cost reduction, 

slightly higher failure rate

● Autoscaled cluster
○ Cluster ramps down and lowers the 

cost when no jobs queued

● Costs with remote storage: 
~2kUSD/month for 150 cores 
including egress to CERN

240

80

40

240

Reduced cluster size to 
keep within budget

New 
budget 
allocation

14% 86%

No jobs available. 
Autoscaling ramps cluster 
down
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~2 months



GKE

● First ATLAS attempt to run a site (compute + storage) 
fully in the cloud

● Volunteer user analyzing 1TB dataset
○ 2.5 to 12.5 (=5 x 2.5) GB of input per job

● Side-condition: All input files need to be downloaded 
within 10 min (signed URL lifetime)

● Google throttles throughput to resources to balance 
usage across tenants

○ Found bottleneck in CPU→disk throughput on lower end VMs 
○ To improve you can upgrade storage type or over-allocate disks
○ Jobs required VMs with local SSD (~50% more expensive)

● Preemptible nodes confuses end users

Stage 2: GKE User Analysis and GCS storage
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Other commercial cloud projects
● More recently we started running K8s clusters at Amazon (Fresno State grant) and 

Oracle (Univ. of Oslo contract, setup in progress)
○ Rucio team also working with davix team to sort out issues for transfers to S3

● Basic compute integration is straightforward and no code changes required
● Effort mostly spent understanding different setups between cloud providers (network 

details, usage of Spot instances, setting up autoscaling, service accounts)
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Analysis and production queue running on Amazon Spot instances
with 0.1USD/hour bid


